‘the modern pro

Programming in C
Third Year (Fifth memmHmJ

uters play a vital role in present day life, more so, in the

Rationale : Comp e
of technician engineers. People working in the field of computer

problems more easily and effectively. In order to

professional life .
industry, use computers in solving .
enable the students use the computers effectively in problem solving, this course offers

gramming language C along with exposition to various applications of

computers. The knowledge of C language will be reinforced by the practical exercises.

\ DETAILED CONTENTS \

1. Algorithm and Programming Development

1.1 Steps in development of a program
1.2 Flow charts, Algorithm development
1.3 Programme Debugging

|.4 Basis of C programming

2. Program Structure

2.1 I/O statements, assign statements
2.2 Constants, variables and data types
2.3 Operators and Expressions

2.4 Standards and Formatted IOS

2.5 Data Type Casting

Control Structures

3.1 Introduction

3.2 Decision making with [F . statement

3.3 IF . Else and Nested IF

3.4 While and do-while, for loop

3.5 Break. Continue, goto and switch statements

Pointers

4.1 Introduction to Pointers

4.2. Address operator and pointers

4.3 Declaring and Initializing pointers,
4.4 Single pointer

T S s e 171 T e e T a2 ..r...._uuu._.._..I..l....nﬂuH.l.......__. o TR

:

o e T L I R A o P T | (= Tl e AT e | T o i - T—] .'

5.

Functions

3: 1

e

Y-

Wh Lh Lh Lh Lh
-~ O W b W

Arrays

6.1
6.2
6.3
6.4
6.5
6.0

=

ad

rJ'I

6,

16.

Introduction to functions :
Global and Local Variables

Function Declaration

Standard functions

Parameters and Parameter Passing

Call - by value/reference

Recursion

Introduction to Arrays

Array Declaration, Length of array
Single and Multidimensional Array.
Arrays of characters

Passing an array to function
Pointers to an array

/ LIST OF PRACTICALS /

Programming exercises on executing and editing a C program.

Programming exercises on defining variables and assigning values to vanables.
Programming exercises on arithmetic and relational operators.

Programming exercises on arithmetic expressions and their evaluation.

Programming exercises on formatting input/output using printf and scanf and their returmn
type values.

Programming exercises using if statement.
Programming exercises using if . Else.
Programming exercises on switch statement.
Programming exercises on do . while, statement.
Programming exercises on for . statement.
Programs on one-dimensional array.
Programs on two-dimensional array.

(1) Programs for putting two strings together.
(11) Programs for comparing two strings.
Simple programs using structures.

Simple programs using pointers.

Simple programs using union.

Scanned by TapScanner

Chapter

o
B Arree

i Algorithm and v_.m__mﬂma_.:m:m Development =

Page Nos,

1-29
30-72
73-100
101-108 __.
109-1 wh_..
135-156
157171

172-200

I == e -

'Programming Development
= D e ———————————————————————————————

F Steps in Development of a Program

(', as you've seen, 1s a compiled language. If you are accustomed (havitual) to using a compiled
language, such as Pascal or FORTRAN, you will be familiar with the basic steps in putting together a
(" program. However, if your background 1s in an interpreted language, such as BASIC, or in a
graphical interface-oniented language, such as Visual Basic, or if you have no background at all, you
need to learn how to compile. We'll look at that process soon, and you'll see that it is straightforward
and sensible. First, to give you an overview of programming, let’s break down the act of writing a C

program INnto seven ;__r._._,,

— The seven Steps of Programming

7. Maintain and
modify the program

6. Test and debug
5 the program

- Run the program

L.n

ompile

3. Write the code

D 2. Design the program

1. Define the program objectives

Step 1 : Define the Program Objectives

Naturally enough, you should start with a clear idea of what you want the program to do. Think in
terms of the information your program needs, the feats of calculation and manipulation the program
needs to do, and the information the program should report back to you. At this level of planning, you
should be thinking in general terms, not in terms of some specific computer language.

Step 2 : Design the Program

After you have a conceptual picture of what your program ought to do, you should decide how the
program will go about it. What should the user interface be like? How should the program be
organized? Who will the target user be? How much time do you have to complete the program?

You also need to decide how to represent the data in the program and, possibly, in auxiliary files,

-
= L T

T

ned byScaner

1 ac which methods to use to process the data. When you first leam programming jy the

e

1t as you deal with more complex situations, you'll find that thege an&ﬁa&,. Step 5 : Run the Program

......
......
.....

osing a sood way to represent the information can often make degjon: . __E
wamﬁ“ﬁwﬂﬂﬂmﬁﬂwu rep Shing the Traditionally, the executable file is a program you can i TOHES
essing he datd Mt ' : spvironments, in . p £l | i oma it MR
R a1a" be: thin in general terms, not about specific code, but e cluding MS-DOS, Unix. Linux consoles, just % he

-

Some of | Other environments, such i ire a run comm
be based on general characteristics of the language. For example, a C program oy . _ - .ﬂ?ﬂm e s require a run comma
[0E,9856C Fm . B i sorarmer mer hag | Integrated development environments (IDEs), such as those provided fo
] 1n data representation than, say, a Pascal prog ; environments, allow you to edit and execute your C program from wi hin
A D R . from a menu or by pressing special keys. The resulting progra s
Eiliiteithe Code operating system by clicking or double-clicking the filename oricon. ol

1. 4

S

b ﬁﬁﬁwﬂ_vﬁn a clear design for your program, you can begin to implement it by Writing ot
code. That is, you translate your program design into the C language. Here is where you really hays “M: Step 6 : Test and Debug the Program -
put your knowledge of C to work. You can sketch your ideas on paper, but eventually you have ¢, get | The fact that your program runs is a good sign, but it's ible

your code into the computer. The mechanics of this process depend on vour Programming \ Consequently, you should check to see that our program does what it is SUDDOS

. We'll present the details for some common environments soon. In general, you use 5 text that some of your programs have mistakes—bugs, in computer jargon. Debugs

r to create what is called a source code file. This file contains the C rendition of your program - finding and fixing program errors. Making mistakes is a natu

- errors, too, will become more powerful and subtle.

#include <stdio.h>

down the ones that the compiler doesn’t catch.

printf("So you have %d dog(s)!\n", dogs);

; | -

When you create a program for yourself or for someone else, that program

- As part of this step, you should document your work. The simplest way is to use C's comment | If it does, you'll probably find reasons to make changes in it. Perhaps there i
..._____.n.nam_._... s ._..t,r_..@ﬁ_unnoﬁo_ﬁﬁ explanations into your source code. up only when someone enters a name beginning with Zz, or you EumE think ¢
S tan 4 0 something in the program. You could add a clever new feature. You migh e dapt the
i TR runs on a different computer system. All these tasks are implified it you Goes
B . . . ‘ : ; greatly simplified if you do
b Ll Hﬁnﬁ step is to compile the source code. Again, the details depend on your programming clearly and 1f you follow sound design practices. i

B T~
¥ Gl
L LR

i

=0 non Euﬂn:_. look at some common environments shortly. For now. let's start with a more . :

conceptual view of what happens Cis a Programmer’s Language
Recall that th iler i X . o,
utable co M__.Hmn nmeE_ﬂ IS @ program whose job is to convert source code into executable code: In contrast, C was created, influenced, and field-tested by wo

A , i ampt | .
tions expressed in a numeric code. As you read carlier, different nc:.%:ﬁﬁ structure, stand-alone functions, and a compact set of keywords.

e langua . . + : : G -
- ‘anguages, and a C compiler translates C into a particular machine _m:m_,_mmm of [nitially, C was used for systems programming. A systems program for

Operating system of the computer or its support utilities, such as ec

de in the nati : : el ih :
1_?& ative language, or machine language, of your computer. This 1anguagéy that C gives the programmer what the programmer wants:

sl E 8% from C libraries into the final program: the libraries contain a ?,W.__ o ©

Sl ﬁﬂ:%ﬂu nﬂuﬁ_ scanf(), for your use. (More accurately, a program called a _E_MH. like. As C grew in popularity, many programmers began to use it to p

g , e compiler runs the linker for you on most systems.) The end res | Portability and efficiency. At the time of creation, C was a much. ong

| Programming languages. P ., "

" .._..__..CE _.._q.. "
ol 3w d

L
]
=
g
o

. ral part of learning. It s
. programming, so when you combine learning and programming, you had best prep:

return 0; Step 7: Maintain and Modify the Program e

..%.

g et
. .ﬁw cou % £

ML

.

|
b
=
b
i
=

& L g
™ Ti r
g LRy

I
o
= |
1
ll-1.ﬂ-

o e I

ATe

| s o

{a ﬂﬁ___‘—n of C Source Code : - reminded often of your fallibility. As you become a more powerful ﬁ.@q

| You have many opportunities to error. You can make a basic design error. You ca

B

scanf("%d", &dogs); The compiler catches many kinds of errors, and there are things you can do to help yo

A w... [~ A

P

.L ...

: .. t main (void) | m:._ua ideas incorrectly. You can overlook unexpected input that messes up your progr: rg ou ¢

{ C Eun::nn:w. You can make typing errors. You can put parentheses in the éi e
int dogs; You'll find your own items to add to this list. A

printf("How many dogs do you have?\n"): | Fortunately, the situation isn't hopeiess, although there might be times when v

Scanned by TapScanner

% Well-Defined Inputs : If an algorithm sa
< Well-Defined Outputs : The algorithm
a& the instructions is given using simple English like statements, It should be well-defined as well.
these instructions to binary, called object code. This object code is ¢ Finite-ness : The algorithm must be finite, i.e it sl
_“EEQ coded program, called executable code. This is code which ¢ | similar. i h.....P ﬁ,

+ Feasible : The algorithm must be simple, man,n&q%
upon will the available resources. It must not contain sc

S/ % Language Independent : The Algorithm designed must be

; . o
. means “a process or set of rules to be followed in calculations or oth must be just plain instructions o
i ._ ations”. Therefore Algorithm refers to a set of rules/instructions that step- EE—M % That can be implemented in any language, and yet the ou put wi
: _1 in order to get the expected results.) . ! vt O
IR e 5 Becutd upon i " - How to Design an >_mo==._3 b

In :aﬂ to write an algorithm, following things are needed as a E.?

| - The problem that is to be solved by this algorithm.

Output \ - I'he constraints of the problem that must be considered while

| ﬁ I'he input to be taken to solve the problem. (i
T'he output to be expected when the problem is solved.
I'he solution to this problem, in the given constraints.

Set of rules
to obtain the
expected output
from the given
input

Algorithm Then the algorithm is written with the help of above parameters mﬂ?
Sithm? ® Example : Consider the example to add three numbers a
m
_3 understood by taking an example of cooking a new recipe. To cook a new recipe, 0 _wnmu 1 ¢ Fulfilling the pre-requisites
uctions and steps and execute them one by one, in the given sequence. The result th As discussed above, in order to write an algorithm, its pre- Ea.E.m_
,w Eu new dish cooked perfectly. Similarly, algorithms help to do a task in programming te I. The problem that is to be solved by this algorithm : Add 3 nun
et the ed output. 2. The constraints of the problem that must be nn_____ao.ﬁ_%
:, . thir n_nﬁmﬂ_..—oﬂ are _nnmzmmm-mﬂmnﬁﬂﬂﬁﬂﬂ? 1.e. ﬁrn“ﬁ are .‘r:.; U_u:: imstructions that nE.—L numbers must contain E.-_u__. &_m_ﬁm and no other characters. !
molemented in an language, and yet the output will be the same, as expected. | 3. The input to be taken to solve the problem : The E_.og numbe
| : 4. The output to be expected when the problem the is n&i#]
Arac ﬁ ,_B.m_ﬁm of an >_QG____HI_.= — taken as the input. *
— g 3. The solution to this problem, in the given constraints : qﬁ&.
¥ -L.. . Characteristics on an Algorithm | numbers. It can be done with the help of'+' operator, or bit-
Emz.mmhma ~ Step 2 : Designing the algorithm s
/ \ cl Now let’s design the algorithm with the help of above pre-req ﬁ._
| Algorithm to add 3 numbers and print their sum : - el
Characteristics of —+| Finite-ness |. START
an Algorithm
2. Declare 3 integer variables num 1, =Em 2 nﬂ nu
/ Language 3. Take the three numbers, to be added, as
Independent respectively. ;
4. Declare an integer variable sum to store the
instructions to cook the recipe, but only the m_..m:%ana 5. Add the 3 numbers and store the result in the
18 for programming is an algorithm. In order for some instru 6. Print the valoectvails nuai L._ -
w.__. lowing characteristics : 7. END 3 o

n Eﬁoﬂ.&ﬂ should be clear and unambiguous. Each of its
ect EE.E lead to only one meaning.

Scanned by TapScanner

0 add fire _E_awam
%Eam designed algorithm

EEN numa3;
Vi E store the resultant sum

E@EE |

_=,,. _ _“_pm m uEﬂw_mE as inpul
& ar the 1st number:");
EEE:
pr d\n", num1);
@amﬂﬁ.mﬂnﬂ the 2nd number: ");
scanf("%d", &num?2);
u___ - s:_ 6d\n", num2);
¥ rd ?EH the 3rd number: ");
b 2o "0pd", &numa3);
ﬁ. . tf("%d\n", num3);
Lf uﬁ_&@ sum using + operator and store it in variable sum
A : E,_+Hﬂ5m+=:=._m

|

i :.mﬁE of the 3 numbers is: %d", sum);

in algorit] wsé numbers entered by the user.
T .._ 3 ‘ ‘ 1"_L -_“..m....,._. HE E Sum.

_ the result to sum.

Step 6 : Stop .
Write an algorithm to find the largest among ﬁwﬁw il .“. rent n
Step | : Start
Step 2 : Declare variables a.b and ¢, ey o
Step 3 : Read variables a,b and ¢,
Step4:Ifa>b
Ifa>c
Display a is the largest number.
Else
Display ¢ is the largest number. e
Else
[fb>c
Display b is the largest number.
Else

Display ¢ is the greatest number.
Step 5 : Stop

o)
Write an algorithm to find all roots of a quadratic equation ax’ +b¥$hl_._m___.__.b
Step | @ Start Et,.l
Step 2@ Declare variables a, b, ¢, D, x1, x2, rp and ip; |
Step 3 : Calculate discriminant o

D « b’ - dac
Step4:1fD >0

rl « _”-._u+a\muxmm _ } 44

2« (-b Jzatmm

Display rl and r2 as roots. e
Else Y

Calculate real part and imaginary part 4

p « b/2a

ip < /(-D) / 2a :1!
Display rp+j(ip) and rp-j(ip) as roots
Step S : Stop
Write an algorithm to find the factorial of a __E._vn-.
Step 1 : Start
Step 2 : Declare variables n, factorial and i.
Step 3 : Initialize variables -
factorial « 1
1« |
Step 4 : Read value of n TR YT
Step 5 : Repeat the steps untili=n
u_“wmn_anTgﬂi_

Scanned by TapScanner

Nowadays, flowcharts play an extremely impor

| reasoning. They help us visualize complex wﬁmﬂﬁ&
~ tasks. A flowchart can also be used to nomﬁn a process or project

Flowchart Symbols -

.l.__

Different flowchart shapes have different conventional meani
more common shapes are as follows:

Terminator L B

The terminator symbol represents the starting or ending ﬁ% of th
.. : En mn%m until i<(n/2) .

of n=1 Gn_._.-ﬂmm 0

Process

A box indicates some particular operation.
s N

Yo 7

. Document

| This represents a printout, such as a document or a report.
- B,

(.fr[-i.l\u\nllll.r{L
CO ;e .Q,.ET mnncua _term + first term *
EHTT Hﬁﬁ

Decision

A diamond represents a decision or branching _E,Ep Li __r:
different possible situations, leading to different sub-processe:

1 _1 .u_—t

r,.r islate the m_me:m_u._ Into a programming language.
com __nﬁa ?:Ea Em mﬁﬁm Anmnnsﬁ &n program).

L .._...._.

A w._p.

It represents information oﬁnﬁaﬁ E@%

- h step in the Ednnmm
sy - mn Bﬁﬂmgﬁ_g of a process. Each s _um. The flow:eh

Scanned by TapScanner

On-Page e ._.m_ il It indicates that the tlow continues on g Em_ﬁrEﬁ
. : _,ﬂ @E”_Em ._ﬁﬁnuﬂnﬁq somewhere else on the same page. |

-Page Reference | |
This symbol would contain a letter inside. It indicates that the flow continues on a matching
i 1 Emwhﬁ:m the same letter somewhere else on a different page.

o —

the flow of the sequence and direction of a process.
.

o

‘e | Programming Languages and Their Uses

et h..luﬁl
1L

B =9
=

o o ~1> USC programming languages to communicate with computers. Many n_n.? .m..__.__h.”_
e zmﬁm w One has its own unique features, though they all share some E:.:_E._.n..wu_
Eﬁ,ﬁmm_m Eﬂmﬂuﬁ_ cach may be best suited for a certain purpose or purposes Wit 4
i m@ﬂu Programming languages are used to create programs to solve problem =

1l

Programming languages, it is virtually _Ewam“_,
that meets all needs. Programming language® =

Programming Languages h

. F .L.l.m. ﬂ—.. § ¥
TP
AIYOTILNITI all

...u. - ...q L bt b B el

Tl S 2

often revised and even combined with other languages
technological needs. “Computers understand instructi o
called a programming language. A programming lan e pr
a task so that it could be understood and executed by a compu

- al 3 r
.. - 14
- g X
_".ﬂ areg
e e

oy i

% Python is an open-source programming language us:
Web developers. Python is well-suited for scientific
learn. & sadd

% Javais prevalent in Web-based development, and it was ¢
the health sciences, education, and finance industries use
of applets from websites, which enable browsers to perfo n a

< Ruby is an open-source scripting language that coders m.m
conjunction with Ruby on Rails. NASA uses Ruby in its worl m”...;

< HTML is used extensively in Web development. HTML is the code
foundation of Web pages, allowing people to create and structure electrc
viewing online. e

% JavaScriptis used by Web developers and software engineers to :.,.."._““__._r"....._._._........ -
make them more engaging. JavaScript enhances HTML, and it is embedc
browsers. I i

% Cisamiddle-level programming language used by software developers
Programmers use C to create applications that integrate with operating

C++, developed in 1983, is another middle-level programmi
extension of C. Programmers use C++ to create games,

% (# is a programming language used by software engineers
to work with Windows operating systems. C# shares simi -with

< Objective-C is an object-oriented language used by mobile d
engineers. Developers creating i0S and OS X utilities often use C

“ PHP was released to the public in 1995. Developers use PHP as :
create dynamic Web pages. Widely used platforms such as W
cohesively with PHP. .

% SQL enables programmers to create, read, update, and d
Companies use SQL to gather data. =

“ Apple uses the Swift programming language to create and m:
applications. Swift 2 is a secondary open-source programmin;
released by Apple. R

The Future of Programming Languages 4

% Advancing technology promises that programming languag
However, predicting the future of programming can be chal

< As more appliances and devices are designed to operate
need to be maintained regularly to keep it up to date and

% Programmers continually face the challenges of
developing applications that allow users to use their de

* The newest programming languages will be faster an
issues. For example, R is one of the most recent progr:

& Ry

i

B

.”.1.:

..nr."...m,...

statisticians for data analysi

Scanned by TapScanner

RN o websites there are two mﬂﬂmﬂ?i:m___mvmﬂmg _ctw 5.5. _u_mwmr 2,53._..
- e ﬁﬁwi of web development :E., creates the application that _.Egah
B i o the colors, the interactions. It's basically concerned with What th
B , this blog on some screen E:mnr IS mrcE.: to you by m_.cE.aE_
ics start with HTML and CSS with use of JavaScript. Javascript has becgo
inant languages in the last few years for front-end work.
Eﬂﬁn@ websites is back-end development, which is related to the SCIVer, the

me ﬁ._—._ﬂ ﬂ_ﬁ

E@%ﬂﬂ to the user when they visit a certain URL, it also communicates With the
p &,,Q.MW m_n website's information and sends this data over E. the user. Back-enq

o %ﬁﬁmﬂn the magic happens and there are many options to choose from when it comes to
amming language, you can stick to Javascript just like in front-end development, or gg with

2ub ,1_. C#, Elixir, Python, Erlang.
Game Development
G ,"_.M_..ﬁwﬁm_ﬁuﬂﬁﬂ is one of the most interesting tracks there 1s, many developers enjoy it and
| ‘developers who develop games just for having fun. Creating games requires what's called g
ne engine, which is a software that is used as the infrastructure for building the game and defines

the game has and what it can do. If you're familiar with Epic Games and Fortnight, Epic Games
ot ‘a game engine and Fortnight is built upon it. The languages used in game development are
C++, C# since it requires a lot of memory optimization and fast performance to create rich
S. It's not limited to C++ and C#, however, and it kind of 1s about which engine you're using
ch platform you're targeting, Lua and Java are also very famous candidates in this industry.

~ Mobile Development

ating mobile applications is a little tricky, as there is more than one operating system for

1g system is the piece of software on your device that is responsible for dealing with the
.agmnﬁann_:.m the layer that sits between the application you create and the hardware,
t's a mic or a touchscreen or GPS. The most two common operating systems are Android and
0id is most commonly used in Samsung while I0S is used in Apple. To create Android apps,
ither Java or Kotlin, and for creating 10S applications you'd need Objective-C or mﬂ_m.

nth. it became possible to create mobile applications for both Android and 10S using Javascript of

e ._ _mw ey ,..ﬂﬁg_&nan phase of software development cycle. The beauty of heart,

I thinking is mixed with system objective to implement design.

ke, es
, but complex, cumbersome and frustrating with many cUf¥

% Modular Designing
% Bottom Up Designing

I. Structured Programming

(1960) coins the term Structural Pro _

(1966) give the basic principal that s ing, Jtal
Mnm.h.—,mﬂ— :.._. H@.m..cq m,-.wﬁ much H-__.ﬂm_ Tﬁﬂh— ﬂf““%-.ﬂﬁ E AP PIK
because 1t 1s avoided by programmers.

B SR Y . ; __.E_Dmﬁ_ - = . :
ns the Eng»n software and serves it to the world. It's y concerned with EEEP |

T'his is the first ﬁﬂmghhg___ m “_.. o .

=

The program is divided into several basic structures. These st
These are following : ; ..% a8
(a) Sequence Structure : This module contains program statem

very simple module of Structured Programming. oot

"

|
=t

Statement ! . i ..
._ i %.w w“— L a%\.ﬁ]

(b) mm_mﬁ:c: or Conditional Structure : The Program has many condit

condition is selected to solve problems. These are (a) if-else (b) else-if, ¢

. K g 5 ..#HH‘_TI

False True

Y
Statement

Statement

nuan_*_ui_,__amamm%w i

cod e

(¢) Repetition or loop Structure : The process of repetition or iteration r
several times when condition is matched, if nauﬁmwﬁ. ol Bt

terminated. In C, (a) goto, (b) for (), (c) do, (d) do - wh le :

Scanned by TapScanner

14 ® Programming in C

owchart and flowchart can be castly code

d iny
¢ as ._.dr.-..____..__u_‘—m.—ﬂ. 0

Advantage : . -
¢ Problem can be easil) anmn:w#i. gl _‘ e 1s hik
program because the nature of this & hmque B

) o modules.

& The program is easily coded usin

is easv because resting and debugging can be Performeq
s Cas)

¢ The testing and debugging
module-wise.

Program development cost low.

Higher productivity. high quahity progn
Easv to modify and maintain
It is called “gototess™ progru

»
-

1m _uu..u__ﬁ_._ﬂ:ﬁ.ﬂ.

mine because use of goto tor unconditional _u_.mz_n::._m s
trongly avoided. The goto is a sign of poor program design. so many designing concepts are
strongi) . lheg s as1g

not favoring it but it is used in all programming language widely. When more goto is used g
£ dable and its impact is negative in program functionality

IR

program, program become less rea Ay s
So it is saving about goto:"Never. ever, ever us¢ goto. It 1s evil”.

¢ Mainiv problem based instead of being machine based.
Disadvantage :
¢ More memony space is required. When the numbers of modules are out of certain range,
performance of program is not satisfactory.
Since it 1s machine -independent. so it takes time to convert into machine code.
¢ The convented machine code 1s not the same as for assembly language. _
The program depends upon changeable factors like data-types. Therefore it needs to be |
updated with the need on the go.
& Usually the development in this approach takes longer time as it is language-dependent.
Whereas in the case of assembly language .the development takes lesser time as it is fixed for
the machine.

2. Modular Programming

When we study educational philosophy. the concept of modulation can be clear without any
ambiguity. Rene Descartes (1596-1650) of France has given concept to reconstruct our knowledge by
piece by piece. The piece is nothing. but it is a module of modern programming context.

In modular approach. large program is divided into many small discrete components called
Modules. In programming language. different names are used for it.

For example :

(Q-basic. Fortran Subroutine

| Pascal | Procedure or Function

C,C+.C# Java |

Function

e It “w_,_omﬁm:ﬂ separable part of program. Modules are independent and easily mand
nerally modules of 20 to 50 lines considered as good modules when lines are increasc
controlling of module become complex.

nm__mw?a:”nm mwn mnc:mmma and tested separately and combined to build system. The top M
__,mo .‘,N: oss modules which charges control over all sub-modules from top to botto
control flows from top to bottom, but not from bottom to top.

The evaluati e _ .
e M: “Hm__“_uﬁ Nw modeling is called coupling and cohesion. The module coupling denotes I
ns between modules and module cohesion shows relationship among data or ele

mm_u_n.
. the

odule 18

m. The

umbef
ments

Algorithm and Programming Development # 15

within a module.

Module

Elements \\ —
Cohesion

Coupling
Modular Programming

3. Top down Approach

(a) The large program is divided into many small module or subprogram or function or procedure
from top to bottom.

(b) At first supervisor program is identified to control other sub modules. Main modules are
divided into sub modules, sub-modules into sub- sub- modules. The decomposition of modules
1s continuing whenever desired module level 1s not obtamned.

(c) Top module is tested first, and then sub-modules are combined one by one and tested.

Main Program

A B C

A1 A2 A3 B1 B2 |
| C1 c2| | c3]

e Example : The main program is divided into sub-program A, B, and C. The A is divided into
subprogram A1, A2 and A3.The B is into B1. and B2. Just like these subprograms, C is also
divided into three subprogram C1. C2 and C3. The solution of Mam program is obtained
from sub program A. B and C.

4. Bottom up Approach

% In this approach designing is started from bottom and advanced stepwise 1o top. So. this
approach is called Bottom up approach.

% Atfirst bottom layer modules are designed and tested, second layer modules are designed and
combined with bottom layer and combined modules are tested. In this way. designing and
testing progressed from bottom to top.

% In software designing, only pure top down or Bottom up approach is not used. The hybrid
type of approach is recommended by many designers in which top down and bottom up, both
approaches are utilized.

3. Object oriented programming

In the object-oriented programming, program is divided into a set of objects. The emphasis given
on objects, not on procedures. All the programming activities revolve around objects. An object is a
real world entity. It may be airplanc, ship, car, house, horse, customer. bank Account, loan. petrol, fee,
courses, and Registration number ete. Objects are tied with functions. Objects are not free for walk
without leg of functions. One object talks with other through carphone of functions. Object is a boss
but captive of functions.

Lidd

T

wer e s

Scaﬁ TapScannr

16 # Programming in C

Features of Object oriented rn._n.._umﬁ

.r. The program 18 decomposed :.__H._ sev
objects and objects are central points 0
Objects occupy spaces in memory and h

eral n&nﬂm. In this language, emphasis is giyer, to 118
fprogramming. All the activities are object Centere(
ave memory address like as records in PASCAL i

» |
structure in C language. : e |

& Data and its functions are encapsulated into a singie entity. | " |

& Reusability: In C++, we create classes and these classes have power of reusability, Othe
programmers can us¢ these classes. . | o

& It supports bottom up approach of programming. In this approach designing is started from

bottom and advanced stepwise to top.

Some technical terms supporting object-oriented languages are

(i) Abstraction : The abstraction is an important property of OOP. 1.::” use of essential featyreg
over less essential features is called abstraction. The following examples will help o

understand abstraction.

e Example : The computer operators know only to operate computer, but they are unaware
to internal organization of computer.

In OOP, there are many devices used for data abstraction such as class, encapsulation, data

hiding etc.

(i) Class : A class is a collection of similar objects. Objects are EE.:TE._; of r..._._;w__ H.::_H a class is
declared, its many members can be easily created in programs. The class binds attributes (data
and functions or methods) of member objects.

Examples :
Class employee

{

char name[30];
float basic;
void getdata();
void show();

h

(iii) Polymorphism : The ability to find in many forms is called polymorphism (Poly: many,
Morphe: shape / form). For instance, + is mathematical operator, it concatenates two mz,_,nmu.__
and give sum of two digits (numbers). Here, operator + has different behavior for ::EE.__“” mﬁ__
data and strings. Just like it, once declared function has different meaning that is Calieq]
function overloading. If operator has different meaning, it is called operator naw_._:ma_:m. _:__

(iv) Encapsulation : The encapsulation is a very striking feature of OOP In which ama_nmﬁ_
function is bound into single unit. Array, records, structure are also example of loW and!
encapsulation but term encapsulation is mostly used in object oriented language. The aamﬁ, mﬁ.__

-~ function are encapsulated into class. External world or external function cannot access the

1 : SR 3 . : rivaté
" . ltcanbeaccessed by its own function or method encapsulated with it into class. It hides P

ghi ¢ elements of objects behind public interface. .
(v) Inheritance : Inheritance is a hierarchy of class in which some properties of bas
- transferred to derived class. The main types of inheritance are:

J@ Single Inheritance : A derived class (child class or sub class) of single base
parent) class is called single Inheritance.

e _n__ﬁmm 18

- T T T T T T T ——r T TR TR
T T e e - L Pttt
A e T e - e e e T Vi Jﬂ.“"w"_r._._- =1

Rk S sias bR iiiuhes

= g i i
k|.
3T [=1

Algorithm and Programming Deve

=
[
-

=

(b) Multiple Inheritances : A derived class of multiple base classes is callec

Inheritance.

(¢) Multilevel Inheritance : When derived class is derived Eﬂﬁaﬁﬂﬂmﬁ
such type of inheritance is called Multilevel Ermaﬁunn. .

§ Introduction to Programming History

Without a program, a computer has no purpose. It becomes an
inert mass, a way to keep a door open when the wind blows.

[n 1952, a very clever man named John Von Neumann was
working on a rather primitive computer that was programmed by
moving wires about on a large plug-board.

[t occurred to him that the program could be stored within the
machine, along with the data, in what we now call “random-access
memory.”

This research removed the final obstacle to large, complex —
programs, the ability to switch tasks quickly, and the logical John Von zn_._q:u::.:
certainly that a program above a certain complexity level cannot be proven to be bug-free. sl

It can fairly be argued that a computer program is a product of pure intellect, has no Enmﬁ__a
existence, and therefore cannot meaningfully be secured against theft. To summarize, a cc 1P sa
machine whose sole purpose is to faithfully carry out a computer program's instructions. .ﬁﬁm_w
than an input/output device to support the intellectual goals of a computer ﬁ.,nm:.ﬁ
programmer), .

The computer's higher purpose resides in its program. This is why, as time passes, i,.
become less expensive and programs become more expensive.

[t is why the richest man in the world is, not a builder of computers, but a builder of prog

[t 1s why, over time, computer scientists have come to focus more on E.cmnmnﬁmmm”mmmﬁwﬂ
on hardware issues. |

and less
el

ﬁ.-_u

LY

ey

It1s why, when a government agency decides to upgrade its computers, it is almost always the cz
that, after billions have been spent, they discover the old software will not run on the new har
and they abandon the project.

F C Pre-processors

As the name suggests Pre-processors are programs that process our source
compilation. There are a number of steps involved between writing a program and execut
in C . Let us have a look at these steps before we actually start learning about Pre-proces

You can see the intermediate steps in the above diagram. The source code written b;
Is stored in the file program.c. This file is then processed by pre-processors and an |
code file is generated named program. This expanded file is compiled by the c¢ mpile
code file is generated named program .obj. Finally, the linker links this n_u._mﬁﬁnemn;
code of the library functions to generate the executable file program.exe. .-

Scanned by TapScanner

\\T

ginclude, #define, # ifndef etc. there are 4 types of preprocessor directiy .
nq..l. m..wan n. L : |

. b C source code

Executabic
code

Object code i er

No

Computer

Pre _uBnmmmE. Perform Action

Preprocessor in C

1. File inclusion

2. Conditional compilation

3. Other directive

Let us now learn about each of these directives in details.
Macros : macro are a piece of code in a program which is given some name, when ever this name °

is encountered by the compiler the compiler replaces the name with the actual piece of code. The
wdefine' directive is used to define a macro. Let us now understand the micro definition with the help

of a program:
#include <stdio.h>
// macro definition

#define LIMIT 5

int main ()

1
for (inti = 0; i < LIMIT; i+ +)
{

printf("%d \n",i);
}
return 0;
~ Output :

ma mma_,nn_n:n- ') at the end of macro definition. Macro definition do ™

J.r

i -

| area = AREA(11,12);

Macros with arguments : we can also pass arguments to macros. Mz
works similarly as functions. Let us understand this with a program,

#include <stdio.h> |
// macro with parameter -
#defme AREA(1, b) (1 * b)

int main()

{

int 11 = 10,12 = b, area;

printf("Area of rectangle is: %d", area);
return 0, .

} | ﬂ l...n ,n_. o

Output: - |
Area of rectangle is : 50 : We can see from the above program that ﬁru:.ﬂ. ﬁn
AREA(Lb) in the program it replaces it with the statement (1*b). not only this, m_ﬂd rhv

macro template AREA(L,b) will also be replaced in the statement (1*b). therefore ﬁ.m%w
equal to 10*5, &0

.J:m inclusion : This Jﬁmm of ﬁﬁﬁannmmﬂ. &.mn:ﬁ H=m the nﬂEﬂmnﬂ.ﬁ%E,ﬁ .

n#J.

E..EB mnmnmc etc. these w_m :EE be _:n_cn_ma for working with these fun ction
function are declared in different header files. . o _..

For example statdard I/0 functions are ‘iostream’ file whereas functions wh
operations are in ‘string’ file.

Svntax :
#include<file name>

Where file name is the name of file to be included.the ‘<’ an
look for the file in standard directory.

User defined files : When a program becomes very large, it is good Eﬂ

smaller files and include whenever needed. These types of files are _.Eﬂ.ﬁk
| file can be included as : : j

#include “filename”
Conditional compilation : conditional compilation directive are types of di

0 compile a specific portion of the program or to skip compilation of some mmx& : C |

ased on some conditions. This can be done with the help of two preproces
{endif. o

syntax :
#ifdef macro name
statement1;
statement2;
statement3;

£l
-.-.__.__._-.-__.__.-_-.-.-u_

®
e L RL B N BE TR NL B B RO |

statement N;

Scanned by TapScanner

B e B

|.lh..JIer.“dMl__ T i

If the macro with name as ‘macroname’ I

normally but it it not defined, the complier will simply s

 Other directives: apart from

commonly used. These are:

L #undef Directive : The #undef direct
This directive works as :

#undef LIMIT

is defined then the block of statement wil] eyq
kip this block of statements.

ive is used to undefine and existing macro

LIMIT” statement will evaluate to false.

some feathres. tives)
complier. Some of the #pragma directives are discussed below :

(i) #pragma startup and #pragma exit : These directives helps us to specity the functions
are needed to run before program startup (before the control passes to main()) and just before pro

exit (just before the fcontrol returns from main()).
| e Note : Below program will not work with GCC compliers.

Look at the below program :
#include <stdio.h>

void funci();

void func2();

#pragma startup funcl
//pragma exit func2

void funci ()

{

printf("Insidefunc1()\n");

}
void func2 ()

{

printf("Inside func2()");
}
int main()

B

¢ - void func1();

i void func2();

Bs % printf("Inside main()\n");

pEe return 0;

the above directives there are two more directives which are

Using this statemnet will undefine the existing macro LIMIT. After this statement every “#f, o

2. #pragma Directive : This directive is a special purpose directive end is used to turn on or of
This type of directives are compiler-specific i.e., they very. from complier

The above code will produce the output as given below when run |
Inside main() OW when run ¢

™ -

This happens because GCC does nto supports #pragma start m._. ..

However you can use the below code for a similar .n:ﬁ:&a:._g%ﬂ
#include <stdio.h> e
void funci();
void func2();

ﬂDElm:lvEmLHnaum_.__.nnﬁw: funci();
..Emmlm:_.m_us#mlzammqnnﬁnw: func2();
void funci1()

{
printf("Insidefunc1()\n");
}
void func2()
{

printf("Inside func2()\n");

}

int main()

| {

printf("lnside main()\n");
return 0;

h
~ (ii) #pragma warn Directive : This directive is used to hide the warning ,h
displayed during compilation. h ks
| We can hide the warnings as shown below - s
| I. #pragma warn-rvl : The directive hides those wamning which are raised
which is supposed to return a value does not returns a value. -k
2. #pragma warn-par : This directive hide those warning which are rais
not use the parameters passed to it. , R Y
3. #pragma warn-rch : The directive hides those warning which are
unreachable. For example : any code written after the ren
ureachable. -~

Debugging

A Software Application needs to be error-free before
2oing out in the market. Customer satisfaction is of
Atmost importance for any organization and only a
Jug-free product can keep your customer happy.

Software programs undergo heavy testing, updating,
‘roubleshooting, and maintenance during the development
rocess. Usually, the software contains errors and bugs,
hich are routinely removed. Debugging is the process o

ing a bug in the software.

L_
oL

Scanned by TapScanner

Mg i

22 @ Programming in C

; , process begins after the softw
. g d removing €rrors s pr dre F
It refers to identifying, analyzing an g sfully testing the
o imasis fly and concludes by solving the problem and su | ..:::”-__.q By Debugging Strategies |
. —uﬂﬁ——uﬂ . ! 3 - 1a .F. _ eCau 1 i §] [| P %} \ _..
it is considered to be an extremely complex and tedious “duy ¢ Itis important to study the system in depth in order to understand the system. It “.....m...,n_..._ |
%nwanr:mm:i debugger to construct different representations of systems that are to be gﬁu& .
< Backward analvysis of the proble . 5
Why do we need Debugging? message in ocdes Pprobiem traces the program backward from the location of fail
s cada of the seftware = e €ssage in order to identify the region of taulty code. You =3._Ew=.&.-ru§0ﬁ :
The process of debugging begins as soon as K . _ A O thoroughly to find the cause of defects i
. her units ol progi + MUTTWare . -
in successive stages as code 13 combined with otl _ PTody ¢ Forward analysis of the program involves tracking the program forward using
Debugging has many benefits such as print statements at different points ; o -akpoints
gring . . ealv. This allov | o ¢ on . points in the program. It is important to focus on the region
¢ It reports an error condition immediately. . e ST AcTe the wrong outputs are obtained. =3
. ¥ . Tatad =0T | !] L " i
makes the process of software developime @ voumustuse the past experience of the software to check for simi
_ ¢ Aa | . imilar problems, The
¢ It also provides maximum useful information | 8 ' this approach depends on the expertise of the debugger. o e

interpretation
¢ Debugging assists the developern reducing useless

distracting information. - D@UE@Q..D@ .ﬁDD_m

. S—— . " i ¢ iesting Codde 1
¢ Through ._ﬂ_‘_‘,_._.:,::.t _1._...__:_, __.;._i S ST R, | - Debuy BINg 1o omputer program used 1o test and debug other
energy in software developmen . NCTT arc a lot o public domain software like gdb and dbx that You
m_-_-mul e UGUEQM::_Q n e i r_. , ._._._...#_.,..__,_. ”.:.._: ..,.“,.:{._.___u._ﬂ._?*n& command-line
The different steps involved in the pros fomated debugging tools include code-based tracers,
A 2 . L 01 some of the widely used L_..Tct_,r.,ﬂ—.:
¢ HKadarel & #f__._—u—_ﬁ
i

. * Valgrind
o by

e B ik
|

1T N . T

vCd In the process ol _.___..,,_r___.:.mt:.__....
Advantages of Debugging

v analysll H i1 of .__..:...r..n.rq.__,... adv antages

05 ¢ Saves lime: Performing debugging at the initial stage saves the y

s i - i av sl the

qor L ate ¢ ol software developers but also saves their energy.

- | cloping ime. ! ¢ Reports Errors: It gives error repont 'mmediately as soon as they occur. This allows the X Sl

1. Identify the Error : A bad wlenufican

i alf = w

- P _ detection of error at an \ PRt
usual that production errors reported by s Are rd ! ind sometimes o | carly stage u:a:ﬁrnm_:nvabﬁgngiii P 3

¢ o the end ol our article. | hope you understood what is debugging and the

“an avoud the use of complex codes in software development. It not only saves

1_ 1] -_F...

information we receive 1s misleading. It 1s import | 1l e ac o rale w.,._,._rl., r .”::..., . I.u. {inding errors softwacs; &S, developers to fix them before
2. Analyze the Error : In the third step 1 need from __._...n_ e .-

location and analyze the code. This helps you in underst B \nalys ey Tcﬂ - Compile

{\'vo main goals, such as checking around the error tor ot | nd, and to mESE

about the risks of entering any collateral damage in the i . | (ompile 15 the process of creating an gxecutable program from code
3. Prove the Analysis : Once you are done analyzing the original bug you need t0 ind 8 wiitten in 4 compiled programming language. Compiling allows the

more errors that may appear on the apphication. This step 1 about writing au mated tes “omputer 1o run and understand the program without the need of the

R W fhe helo of & test framework 1”___..__5_._:5_:.__.” software :,..,nmu to create it When a program is compiled it is _&Ff :
4. Cover Lateral Damage : In this stage. vou need to create or gathe the unit 1S5 M__.. _ﬁ,m_ﬁ._.,.,..q._ compried for a specific platform (e.g., IBM platform) that works with | .

code where you are going to make changes. Now, if you run these unit Iesis they o _ .,::__ﬂ__:r_n S g T_..N..},E_n —u_ﬂ_:..a:sw. l.m '

I'he first compiler was developed by Grace Hopper while working on _

pass.
b the , .
8. Fix & Validate : The final stage is the fix all the crrors and run all the test scripts 0 @5 the Harvard Mark | computer. Today, most high-level languages will
they all pass nclude their own compiler or have toolkits available that can be used to

Scanned by TapScanner

..n.\ nd for C
q linse for Java and gcc comma i n
e e “Hn EWM mm,ni seconds or minutes to compile. If ng o,

rogram is, it shoul
L ww_ﬂm compiled, an executable file is created.

= ﬁﬁuﬂw_ma|n=-n i< the total time it takes a compiler to compile gode info 2 program thag nﬁ.__m

| Object Object
_ File File
Runtime : Executable
Library Linker Program

-

nsform a program written in a high-level programming language from source code int
a@,ﬂ_m @oan.,_?cmamauﬁm write programs in a form called source code. Source code must go throug]
+ Jﬁ..__n_.m_ steps before it becomes an executable program. The first step is to pass the source code thro

. piler, which translates the high-level language instructions into object code.

H_uu final step in producing an executable program - after the compiler has produced object code
18 to pass the object code through a linker. The linker combines modules and gives real values to a
symbolic addresses, thereby producing machine code.

ﬁ.« @m@_n _m_.._.:nz re of C Program

b

AC _._..a.m..u:_ is divided into different sections. There are six main sections to a basic ¢ program.
- The six sections are :

AN Documentation # Link
{ & Definition & (Global Declarations
_ | <« Main functions % Sub programs

m,.e now that the introduction is out of the way. let us jump to the main discussion. The whole cod
EE outline. Each code has a similar outline. Now let us learn about each of this layer in detail:

© Documentatir
Link Section

E.u.ru E&m—az wmnen_:
Global Umgm_.mﬁ_u: Section

_uc:nnns

m_._nﬁ_du_.m:,_ Section

Basic Structure of C Program

—_—

- Basic Structure of C Program

Moving on to the next bit of this basic mﬂdnEHn n&m @@E rar |

Documentation Section

The documentation section 1s the part of the program i._.q_
associated with the program. He usually gives the name of ﬁmm

i 1134 Hm.

)

other details like the time of coding and description. It gives m&w..&wn eading the cc

the code.

f oM

Comments are a way of explaining what makes a program. jﬂ

used by others to understand the code,
or

1. Single line comment
2. Multiline comment.

1. single line comment : Represented as // double forward slash, ::ﬁ
comment. It applies comment to a single line only. It is referred to as O.T_Jmﬁ_,

originally part of C++ programming.
For example :

//WAP to printf the name of your university.

Example :

// write a program to print the name of your university.

#include <stdio.h>
int main()

1

// Single line Welcome user comment

printf("Gopal Narayan Singh University");

return 0;

}

and end with asterisk and forward slash (*/).

It is used to denote multi-line comment. It can apply comm
referred to as C-Style comment as it was introduced in C progre

/* comment starts

* File Name: gnsu.c
* Author: Mr. xyz

* description: a program to display hello ﬁE.E H& np

*1

o F = D v .
.l. g T S o

2. Multi-line comment : Represented as /* any_text */ start ﬁﬁm_m.ﬂ_,.w..)

—___....-.._1_..'
AT

mﬁ

i

0} f_:
R

rpd m....ul."..
This is a comment block, which is ignored by the compiler. ncEEaE

program to add info about the program or code block, which will mﬁ
understand the existing code in the future easily. Types of comments:

Scanned by TapScanner

e : : | N
B & s Ui o declaroill the header files that will be used in the prog,;
Mw 5 = ﬁEmEES link the header files to the system librarieg 3
to the compiler beliis : iler to include the head |
s | . e compiler 1o cader file otq: .
A Header file is a collection of built-in (readymade) [ReHons, Er_nw We can directly use jp -
u A ..._.. g it ! 1"_...

. . file. Standard h .
AT . lude statement with the rmmaﬂ. : eade
m by using pre-processor #include f areas like string handling, Bmﬁrmamznmﬂ b

‘provided with each complier, and covers a range 0
g ﬁu@ 1 conversion, printing andreading of variables.

~ With time, you will have a clear picture of what header files are, as of now Consider .

" it
it

FE

- readymade piece of function which comes packaged with the C language and YOU can ygg g
“_. 4 ,%T .gwm__ﬁaanm about how they work, all you have to do is include the header file in YOUr progrr.
o o © To use any of the standard functions, the appropriate header file must be included. This j o
~ the beginning of the C source file./ i
- " For example, to use the printf() function in a program, which is used to display anything on
screen, the line #include <stdio.h> is required because the header file stdio.h contains the i

~ function. All header files will have an extension.h.

o Example
. % #include<stdio.h>

 Definition Section

K In this section, we define different constants. The keyword define is used in this part.
#define Pl =3.14
- Global Declaration Section |
- This part of _ﬁn oﬁm is the part where the global variables are declared. All the global v ._1__,_,_,______*“__
,_.._,H.__ used are declared in this part. The user-defined functions are also declared in this part of the code.

e float area(float 1);
imtia=.7;

m_. Main Function Section

| ,_”,meno.wa_ ._._H_..___,_ﬁ : Wﬂm to have the main function. Each main function contains 2 _ur
e Hr UG mﬁ | aﬁnca..un part. The declaration part is the part where all the ﬁm:m_u_._m__w

ends with the curly close bracket 2%

..|.....

ﬁ@@ eclaration and execution part are inside the curly braces

rogram will be ex

[P .p__..mw....?.;. = l.

C—— L e Y
“main() functio

ek .“li.lu...-._-..mf..-...m..“.n.n._. . i e T
-J -1 — --
.q -

printf("%d”, a);
return 0;

}
Sub Program Section

T Y0y

All the user-defined functions are defined in nﬁnMﬂT) of
int add(int a, int b) L
.ﬁ 5. B _ b MY .
return a+b; &
} "
Sample Program T

‘ . -
%

The C program here will find the area of a circle usine —_—
variable pi holding the value of pi using s STELE

* File Name: area of circle.c
* Author: Manthan Naik R
* date: 09/08/20 19 h

* description: a program to calculate area of circle
* user enters the radius

b
#include<stdio.h> //link section
#define pi 3.14 //defination section
float area(float 1); //global declaration
int main() //main function
{
float r:
printf(" Enter the radius:r"):
scanf("%f',&r);
printf("the area is: %f.area(r));
return 0:
}
float area(float r)
{
return pi * r * r;//sub program
}
Output :
C:\WINDOWS\SYSTEM\

Enter the RADIUS : 7
the area is: 153.860001

e L L L T

(program exited with code: 0)
Press any key to continue - - -

Scanned by TapScanner

yet mnemonics that are being used ¢, Yo
Ien,.

nachine dependent ¥ ine and high Level language ;. Pres
1o o aerctandable by machine and fig guage g .
Hmmﬁﬁnonm_ﬁ in machine code, i.e. In the form of 1'g and (g
gt Em : h..n. ! (ly in machine code. The programs are writtey, Ha
_.mmﬁ\,.__...., S @&E& etc. and are called source code. These source code n :

ike Java, C ust be converted into machine language to pe eXeCuteg

sl
Fill

by the computer and
\guage processors can be any of the following three types:

e processor that reads the complete source program E_.Enm_ in high leve] _mzwﬁswn.”.._ﬁ
in one go and translates it into an equivalent program in machine language is calleq 4 .
¥ ,.-qu .._..“...;.._- g- 5

ple : C, C++, C#, Java
1.1.;_, a compiler, the source code is franslated to nEnﬂ ﬂom_m successtully if it is free of errors_ Ty 4

or specifies the errors at the end of compilation with line numbers when there are any errors iy
urce code. The errors must be removed before the compiler can successfully recompile %

I"Fl

[1g
Wik

.p.“... - B B Source Code Object Code
=1 o (High Level Language) S mputan (Machine Language)

mbler

Bes ,1 : Assembler is used to translate the program written in Assembly language into machine code.

' |-1. '] =llu..n.u__...,.._....w...... AP EP e S o .. x iy . 5 T) i

J“m;? Irce program is a input of assembler that contains assembly language instructions. The output
- fgén w._._m.u:,.. a t L

e oy assembler is the object code or machine code understandable by the computer.

Zui e
e o
. Fi
1
P 1 e s e L
..“.-

-. Code .
_ y N, emk : sl il —— e b“ﬂﬂ.—.—.——u_m“—. D_u._m___uﬁ O_H.ﬁ_m
| (Assembly Language) e i | o

inates its translating process at that statement &%

._ €m to an object code or

'on and Matlab.

machine code.

Difference between Cor
COdE ol
i o F o R by i e P L 11
ar s d . SN S

e ——

Execution is faster.

generated intermediate object code.

Debugging is hard as the error messages are
generated after scanning the entire program only.

e Examples : C, C++, Java

Performs the translation of a program as a whole. |Pe

Requires more memory as linking is needed for the|Memory us

HH_,.....“..; ﬂ_ L

Scanned by TapScanner

e o]

BT I
L R b e

chargrade;
scanf("d%f%c", &avg, &per, &grade); . 28
& scanf works totally opposite to printf. The input is read, interpret using the conv
specifier and stores it in the given vanable. .
& The conversion specifier for scanf is the same as printf.
«» scanf reads the characters from the input as long as the characters match or it
The order of the characters that are entered are not important.
& It requires an enter key in order to accept an input.

(iiii) getch

P |/O statements in C _u_d@__.m_.:_.:_.zm This function is used to input a single character. The character is read instantly and it does not
i . J 4 ||lll.lll-. - T,] afe LT) L g Elaf nfs] T LI e g B L e F T 1

n:..uzm_zn for _.E:ilﬂ._._:% the information :Eﬁdmﬂ the require an enter _..rw to be ﬁﬂrwvrn_ 'he character type 1S returned but it does not echo on the screen.

There are some library functions which ar¢
computer and the standard input and output devices.

These functions are related to the symbolic constant and are avail
Some of the input and output functions are as follows

(i) printf
This function is used for displaying the output on the screen r.¢. the data is moved from the
computer memory to the output device. |
Syntax :
printf("format string", arg1, arg2,...);
In the above syntax, ‘format string’ will contain the information that 1s formatted. They are the
characters which will be displayed as they are.
argl, arg2 are the output data items.

Example : Demonstrating the printf function

Syntax :
int getch(void);
ch=getch();

able in the header file.

Scanned by TapScanner

where,
ch-assigned the character that is returned by getch.

(iv) putch
this function is a counterpart of getch. Which means that it will display a single character on
screen. The character that is displayed 1s returned.
Syntax :
int putch(int):
putch(ch);
where,
ch -the character that is to be printed.

printf("Enter a value:"): | (iv) getche
¢ Printf will generally examine from left to right of the string. This function is used to input a single character. The main difference between getch and getche is ._,._.. e
 The characters are displayed on the screen in the manner they are encountered until it comes | that getche displays the (echoes) the character that we type on the screen. : e
across % of \. - Syntax :
o W:nn itcomes across the conversion specifiers it will take the first arcument and print it in the int gelch(void);
orma)
{ given. ch=getche();
ii) scanf i
(ii) - (vi1) getchar
scanf is used when w Y _ _ s function i | . |
= ¢ enter data by using an input device This function is used to input a single character. The enter key is pressed which is fo
yntax : __ character-that is typed. The character that is entered is echoed. |
scanf("format string", &arg1, gargz, ... Syntax :
M.wn number of items which are successful are returned ags
ormat string consists of the co . : |
nversio _
represent the address of the variable mmn_ﬂ o %E. Arguments can be variables or array name m__m TR
| e : variable must b o s s, Arrd ‘his function is sr side of getchar. A si s di
.EEM should never begin with an ampersand. ¢ preceded by an ampersand (&) M:_..., function is the other side of getchar. A single character is displayed on the
xample : Demonstrating scanf | S #
int avg: | putchar(ch);

float per; |

e LR L et —
= r=
e T T T
4 e e i

- ARWES -
R
g e A

computer and the standard inpye o
&n must be such that it represents , g .&.._. Standard input or stdin is used for taking input fr

g Standard output or stdout is used for giving ﬁﬂﬁn E
key has to be pressed for ending
ternatives of scanf and v::_wm.qc__.ﬁ functionality, programmers must include stdio __Ehm__....ﬁmw b .mnf i

Reading Character

The easiest and simplest of all /O operations are

character from standard input (keyboard).getchar() function car >
function is alternate to scanf() function. .

Syntax :
varname = getchar();

Example :
#include <stdio.h>
void main()
{

all three essential functions of a compuler arc reading, Prog __.{..Em and w char title:
Emﬂ.w amﬁﬁ programs take data as input, and then after processing the processed data js title = getchar();
ved which is called information. In C programming you can usc scanft) and printff) prege }

There is another function to do that task for files: getc which is mﬂm.: ac
standard input. -

| ._E_ﬁo_ﬂmm <stdio.h> Syntax :
void main() int getc (FILE * stream);

{ | Writing Character In C

inta, b, c;
nt @, b, C; Similar to getchar() there is another funct used
printf(“Please enter any two numbers: \n") Syntax : ’ e Eiuw&

scanf (“96d%d.”, &a, &b);
c=a+b;

putchar(varname):
Example :

#include <stdio.h>

void main()

{

char result =

putchnr(result);

putchar(\n’); Ty

_. nr. ..,._w i

Similarly, there is another function putc which is used fc
standard output.

Syntax :
int putc (int ¢, FILE *stream);

Formatted Input

It refers to an input data which has been a
scanf(), We have already encountered this EE
Syntax :

scanf(“control string”, arg1, E.wﬁ

it O

15 used to take input from the user. and respectively printf() 58

oDt hile ﬂéﬂ“ t0 interact Ez_._ users, stdlib is the standard n
| E?-.E.a:_ operations in C, two important s&

Scanned by TapScanner

.| : -1. "||.. .” r
34 # Programming’in C L 35 [C
Ll ¥ - mutted num : - A -
ification for reading integer 10P _ s : EEEE a
The field spect : : Description of all Keywords in C - BE
d g0 signifies the Mteger number ¢ e O
%W S on m_umn_mnm:c:. W . inteeif at defio s - =
Here the % sign denotes the CONVERY 4 o ype pumber (0 op Ieac I ITCE ST 101k g uto - B ()
the field width of the number t0 be read, d de The auto keyword declares automatic variables. For example : ,___“”.__ O
Example : auto int varl; . | . . Bz a
#include <stdio.h> This statement suggests that varl is a variable of storage class auto and type int. | —
void main() . Variables declared within function bodies are automatic by default. They are recreated each time a === ~
{ function is executed. ® O
int varl = 60; Qince. automatic variables are local to a function, they are also called local variables.
int var2 uaﬁww“ Dot avar2): Break and continue eO
i M m :. vdrl, r ' _ - , 3 3
Nnmn: foddin The break statement makes program jump out of the innermost enclosing loop (while, do, for or = C
. -naces. tabs or new-line and the punctuati switch statements) explicitly. E
items have to be.separated by spaces. onmgte ' , - - - _
:._WE am”mmm_mﬁwmwwhﬁm i I'he continue statement skips the certain statements inside the loop. a
are not counted as : Gl e : ; 2
_w . for (i=1;i<=10; ++1) QO
Reading and Writing Strings | A N
There are two popular library functions mﬂm: and puts() PE.:,E to :,”,_,__ with strings in C gety if (i==3)
The char *gets(char *str) reads a line, @E:.ma_z and _..mnn_uw the string _u,:::i_ _;: r.{” ::_“ Str and j continue;
terminated when the new line is read or EOF 18 reached. The declaration of gets() function is: if (i==7)
Syntax : break:
char *gets(char *str); printf("%d", i); .n
Where str is a pointer to an array of characters where C strings are stored. 1 . |
uts; The function - int puts(const char *str) is used to write a string to stdout, but 1t do :
s 2P pul £ : Gl Output :
include null characters. A new line character needs to be appended to the output. The declarationis: 12458
Syntax : ; o . _ : . .
% i pitelconstichar st When I 1s r.E._:_ to # continue statement comes into effect and skips 3. When I is equal to 7, break
: ﬁ_u. ,r m C Ew str) itatement comes into effect and terminates the for loop.
where str 1s the string to be written in C. -
) g switch, case and default
- mw‘EG-.Qm The switch and case statement is used when a block of statements has to be executed among many
Rl P aramam; T | = rlocks. For example :
= r:ciﬂ mm ..HH_Hmmﬁ__mzszmm :._mE. are set words that you cannot use as an identifier. These wor® switch(expression)
e : .ﬁ_ : words or _E.‘,EE% . Keywords are standard identifiers and their meaniog J_
purpose s predefined by the compiler.
3) case 1:
List of all Keywords in C Language //some state m.
There is set of 32 keywords i . //[some statements to execute when 1
YWOIGS 1n ¢ programming language. break;
auto break o
case cha case ‘5':
const : ar AR ‘
continue default T |
double 2is do //[some statements to execute when 5 i
float for e extern break; | __mmt
: goto - default: el
int long register A it o &
short sivned Ll //some statements to execute when default; | g
en size of ¢ gl } :
struct switch crid static i
unsigned void ﬂ_\._,_.,_um .M:, union *har o B ="
Olatile 1o
while The char keyword declares a character variable. For example: o

char alphabet;

or

There are three types of loops in C progr
eyword for. For example:

for (i=0; i< 9; ++i)
{
/ printf(“%d ”,i);
}
Output :
012345678

rOto

The goto keyword d .
R e iwhile (1 <10) g yword is used for unconditional jump to a labeled s

example:
J.fﬁ.ﬁﬁﬁo and ﬂaua for (i=1; i<5; ++i)
S ywords double and float are used for declaring floating type variables. For example: i {
- float number; | liff==10)
| .p._ il double long Number; __ Soto/exar;
~ Here, number is single precision floating type variable whereas, long Number is a double preci “, . o
_ aﬁn Ty . printf(“i is not 10");
. | : i error:
if and else printf("Error, count cannot be 10.");
In C programming, if and else are used to make decisions. Output :
if(i == 1) Error, count cannot be 10.
y - printf(“i is 1.") nt
else

The int keyword declares integer type variable. For example:
int count;

Here, count is a integer variable.

' prinf(“i is not 1.”)
B | If value of i is other than 1, output will be :
o m. Rt 11 not 1
short, long, signed and unsigned e
The short, long, signed and unsigned keywords are type modifiers that alters
lata type to yield a new type.
| short intsmalllnteger;
long int biglnteger;
signed int normallnteger;
unsigned int positivelnteger;

Range of int type data @ﬁﬂ

Data types Range
short int 32768 to
long int — 214748

signed int
unsigned int

Scanned by TapScanner

» value.
g . and returns the \
. : the function
keyword terminates

inth = 5:
=Y return b;

}

This function func{) returns 5 to the calling function.

r siz The size of ke evaluates the size of data (a variable or a constant). _.
FPay e size of keyword
_ \ #include <stdio.h>
=« int main|)
{
printf{“%u bytes.” sizeof(char)):
}
— Output :
1 bytes.
*

The register keyword creates register variables which are much faster than normal variables,

register int varl;
static

The static keyword creates static variable. The value of the static variables persists until the
the program. For example:

static int var;
struct

The struct keyword is used for declaring a structure. A structure can hold variables of &j
types under a single name.

struct student .

{
char name[80]:
float marks;
int age;

}s1, s2:

4

typedef

The typedef keyword is used to ex
| typedef float kg;

kg bear, tiger:

plicitly associate 2 type with an identifier.

union student
{

char name[80];
float marks:
int age;

void

The void keyword indicates that a function doesn’t return any value.
void testFunction(int a)

.

Here, function testFunction() cannot return a value because the retumn type is void.
volatile it 8
The volatile keyword is used for creating volatile objects. A volatile object ¢
unspecified way by the hardware.
const volatile number
Here, number is a volatile object. g
Since, number i1s a constant variable. the program cannot change it. However, ha iware ca
change it since it is a volatile object. .
const

const can be used to declare constant variables. Constant variables are var
initialized, can’t change their value. Or in other words. the value assigned to them cannot be 1
further down in the program.

Syntax :

const data_type var_name = var value;
® Note : Constant variables must be initialized during their declaration con
also used with pointers, Please refer the const qualifier in C for unc erstan

extern

R

extern simply tells us that the variable is defined elsewhere and not within the s: _.,._"q,._..b,.. 1O
1s used. Basically, the value is assigned to it in a different block and this can be o L.T
a different block as well. So an extern variable is nothing but a global variable initiali;
value where it is declared in order to be used elsewhere. It can be accessed within
Also, a normal global variable can me made extern as well by placing the ‘extern’
declaration/definition in any function/block. This basically signifies that we are
variable but instead we are using/accessing the global variable only. The main purpose
variables is that they can be accessed between two different files which are part of a lar

Syntax :

T e
" = L ey J
B (e in
e+.n.__._. .
L r.
.“l .m.._._.h ._q... e
.23 : .
| 1
uﬂ. _ g :
8

extern data_type var_name = var_value;

Scanned by TapScanner

z_mﬂ_w. used while _Ei_..mﬂw Pro L
"” 1a01 in g _”—._ﬂm—. ﬂmﬁﬁ‘_ﬁ even after _”_.—ﬂu__‘ dare __u__.: E,”.:._
‘2 property of prese Jast use in their scope. S0 we can say_J 1
of the program. Thus, no new . ~ Uy
: function to wh;j Ty
. is local to the | ich the, *-
. ;nm_w Mﬂﬂﬂn e within that file as their scope jg _c.n“.w M
the compiler. 3

efault, they are assigned

| mm&n data type var_name = var_value;

|
|
s - ot _m

hat makes it SO special? void, as it literally means, is g o ¢
% it 1S us : I
holds no value. For example, when 1t is used as the refyp,

at the function returns no value. Similarly, when its addegy,

otion takes no arguments. |
se refer to the void pointerinpi
Plea Pointer inCfy

void is a special data type. But v
data type. It means it has nothing or it
type for a function it simply represents th
function heading, it represents that the fun |

e Note: void also has a significant use with pointers.

understanding the same.

ef

typedef is used to give a new name o an already existing or even a custom data type (Iike;

structure). It comes in very handy at times, for example in a case when En name of the strugy

defined by you is very long or you just need a short-hand notation of a per-existing data type.
Let’s implement the keywords which we have discussed above. Take a look at the following cod

which is a working example to demonstrate these keywords:
#include <stdio.h>
// declaring and initializing an extern variable
extern int x = 9;
// declaring and initializing a global variable
// simply int z; would have initialized z with
// the default value of a global variable which is 0
intz = 10;
// using typedef to give a short name to long long int
/| very convenient to use now due to the short name
typedef long long int LL;
// function which prints square of a no,
// return data type
. void ca e(int arg)
{

printf(*The square of %d is 9%\ "
u. q of %d is m_m_a—..ﬁ.— , arg, arg mﬂmuh

£
b

and which has void as its

Ay .urm.h.-. -4
-y

// declaring a constant variable, its value cannot be :

vlr.l 3

4]

const int a = 32; . A
//declaring a char variable SR
char b = ‘G’; 18

// telling the compiler that the variable z is an extern variable
//and has been defined elsewhere (above the main ?ﬂnﬂﬁ&%ﬁ«
extern int z; N
LL ¢ = 1000000; e
printf(“Hello World!\n");
// printing the above variables Pp———
printf(“This is the value of the constant variable ‘a’: mwmﬁamwrh oy
printf("'b’ is a char variable. Its value is %c\n",b); " r L
printf(*'c’ is a long long int variable. Its value is %lld\n",c); ._“:.4..._.” -
printf(“These are the values of the extern variables ‘x’ and ‘z” - -
“ respectively: %d and %d\n”,x,z); .
//value of extern variable x modified
Z;
// value of extern variable z modified
9;
// printing the modified values of extern variables ‘x1 and ‘z’
printf(“These are the modified values of the extern variables” “
“x"and ‘2’ respectively: %d and %d\n”,x,z): R
// using a static variable L
printf(“The value of static variable ‘y’ is NOT initialized to 5 after the ”
“first iteration! See for yourself :)\n”): i
while (x > 0)

{

e N1
- L
.
b

X =

Y A—

B 5
e

static int y = 5;
Yi<+;
// printing value at each iteration
printf(“The value of y is %d\n”,y);
X--;
h
//print square of 5
calSquare(S);
printf(“Bye! See you soon. :)\n");
return 0;
}
Output :
Hello World

This is the value of the constant variable ‘a’ 32
‘b’ is a char variable. Its value is G

Scanned by TapScanner

42 % Programming in C

‘c’ is a long long int variable. Its value is 1000000

. _,H_. I
These are the values of the extern variables Y Hmmmm x” and ‘7’ respectively: 2 ang s |
" m—- ¥
e modified values of the extern v : B o
These are th . : i initialized to 5 after the first iteration! See for YOurselp
The value of static variable ‘y’ is NOT in

y
The value of y is 6 |
The value of 'y is 7
The square of 5 is 25 |
Bye! See you soon.:)
Basics usage of these keywords - |
if, else, switch, case, default - Used for decision control programming structure.
break - Used with any loop OR switch case. | |
: int, float, char, double, long— These are the data types and used during variable
for, while, do - types of loop structures in C.
void — One of the return type.
goto — Used for redirecting the flow of execution. |
auto, signed, const, extern, register, unsigned — defines a variable. |
return — This keyword is used for returning a value. |
continue — It is generally used with for, while and dowhile loops, when compiler encounters thiy
statement it performs the next iteration of the loop, skipping rest of the statements of current iteration,|

espectively: 9 and 10

declaration,

enum — Set of constants. !

_H sizeof — It is used to know the size. |
struct, typedef - Both of these keywords used in structures (Grouping of data types in a single
record). |
union - It is a collection of variables, which shares the same memory location and mernogf
storage. |
volatile
|
- Constant _
; |
ﬁczﬁmim refers to the fixed values that do not change during the execution of a Ecm_.mamh”._
: constant™ 1s a number, character, or character string that can be used as a value in a program. %

constants to represent floating-point. Integer, enumeration. or character values that cannot be Eoﬁ_mm&_
There may be a situation in Programming that the valye of certain variables to remain constaf
| during execution of a pProgram. In doing so we can use a qualifier const at the time of initialization. __
‘ For example :
const float pie = 3.147: |
const int radius = 4
const char c = ‘A’;
const char namef]] = “Samina Kauser:
In C constant can also be used y

2

SINg preprocessor directive

isd
Program Structure # 43
; " | ; L i S I : F l 1
g : TR _\m_.m .
t#define FIRST N UMBER | N
Key point for constant : “ __._.
¢ C _m;...._._m_mza are also like normal variables. But, only difference is, their values can not be ,..r...m.__H
modified by the program once they are defined. o L &
< Constants refer to fixed values, They are also called as literals ’ .._...__,,_

% Constants may be belonging to any of the data type.
% Syntax:

const data_type variable name: (or) const data_type “variable name;

Types of C constant
[. Integer constants 4. Character constants
5. String constants
6. Backslash character constants
_ W eda type EHHEE&
Int (53, 762, -478 etc.) |
unsigned into (5000u. 1000u etc) |
| long int, long long int |
| | _ |(473,6472, 147, 483, 680) -
xnz or _.__E:_.:fn point constants float (:_.nwmumﬁ
| : _ e S e doule (600.123456789) -4
int (Example : 013/*starts with 0 * /)
nt (Example: 0x90 /*starts with 0x*/)
char (Example: *A”, ‘B’ Oy
char (Example: "ABCD". "Hai")

Scanne TScanner

2. Real of Floating point constants
3. Octal & Hexadecimal constants

_ Constant type

—— —_— ok

| Integer constants
[

:)ctal constant

__ lexadecimal constant
_ an A

p=
Character constants

_ String constants

_ Rules For Constructing C Constant

1. Integer Constants In C

The numbers with no fractional part are called integer constants. C accepts integer EE_.nn
numbering systems that are decimal, octal and hexadecimal. When an integer has no prefix then C
considers it as decimal integer, When it has 0 (zero) prefix then C considers it as Octal and when it has
Ox (zero ex) as prefix then considers it as hexadecimal Integer.,

“ An integer constant must have at least one digit. - 3.
< It must not have a decimal point Mess
% itcan either be positive or negative.

< No commas or blanks are allowed within an integer constant.

% It no sign precedes an integer constant,.it is assumed to be positive. sy £ |
* The allowable range for integer constants is -32768 to 32767. AR TR =
In C language printf() and scanf() are so intelligent so that they automatically convert frc mone
System to another according to the formatting characters we use. S HEN
Y00 (o represent or convert to octal | i o et

7ox or %X to represent or convert to hexadecimal.

S5

44 # Programming in C

9,x display In small case
94X display in upper case
%d to represent or convert to dec
Example : |
#include<stdio.h>
int main()
{

int a = 10; S
ﬁﬁhﬁ:@&iﬁaﬁ#xgﬁk ,a,a,a,a);

return 0;

}

Output:
10
12
a

A

imal

2. Real Constants in ¢ 1
Real constants are often called Floating Point constants. The real constants could be written ip twg

forms—Fractional form and Exponential form. . | |
Integer numbers are unable to represent distance, height, temperature, price, and so on, Thi

information is containing fractional parts or real parts like 56.890. Such numbers are called Real o String Constant

Floating Point Contents.

Example : i
< A Real Constant must have at Least one Digit
% 1t must have a Decimal value
< it could be either positive or Negative
% if no sign is Specified then it should be treated as Positive
No Spaces and Commas are allowed in Name

Following rules must be observed while constructing real constants expressed in fractiond
form :

(a) Real Constants must have a decimal point.

(b) A real constant must have at least one digit.

(¢) Real Constants could be either positive or negative,
(d) Default sign is positive,

(€) No commas or blanks are allowed within a rea] const

3. Character And String Constants InC

ant,

. gl ,_um_n
- T & # 5] 8 g =] 5——..:~= MH
inverted commas. ingle Symbol that is enclosed

I. Character Constant Can hold
2. Contains Single Character C
3. Single Character js smallest

Single character at a time, _

losed within 5 pair of Single Quote Marks
Character Datq Type in C,

e S IR G i
P] -
Program sl —
4. Integer Representation: Character Constant reprent by Unicode - .-..ﬂ.. e
5. It is Possible to Perform Arithmetic Operations on Character Constants -y)
Examples of Character Type : £ O
f ©
hd —
9 >
‘4343 O
pr @
D
Vi -
X -
|y i 5 w
How to Declare Character Variable : S
Way 1: Declaring Single Variable
char variable name;
Way 2: Declaring Multiple Variables
char var1,var2,var3:
Way 3: Declaring & Initializing
char varl = ‘A’,var2,var3: .“
lext enclosed in double quote characters (such as “example”) is a string constant, It produces a
block of storage whose type is array of char. and whose value is the sequence of characters between the
double quotes, with a null character (ASCII code 0) automatically added at the end. All the escape
sequences for character constants work here too. The compiler merges a series of adjacent string :
constants into a single string constant (before automatically adding a null character at the end). For
example, “sample” “text” produces the same single block of storage as “sample text”.
A string constant is a collection of characters, digits, special symbols and escape sequences that .
are enclosed in double quotations.
We define string constant in a single line as follows...
“This is btechsmartclass”
We can define string constant using multiple lines as follows. .. 1
*This\ -
is\ 3
btechsmartclass » =
We can also define string constant by separating it with white Space as follows. ..
“This™ “is” “btechsmartclass” s
All the above three defines the same string constant. . J
Key point - 2

% A character constant is a sin

S gle alphabet, a single digit or a single special symbol enclosed i
within single quotes. - CHCIOSE ..

) . g

< The maximum length of a character constant is 1 character. . &

=T

ﬂ.f'- ‘i-j b

i

=, AL
o

. double quOtes:

tants In C
2 which means they

ons aside 1ro1

are not displayed on the SCre

_ : : en
n displaying text. mwmﬂu_n Op

4. Backslash Character Con

Certain ASCII characters a L er e

S
g

Those characters perform @ ing a bell

. : r rin -
ving to a newline, or ring _quence usually consists of a backslash and 4 letter .
ements. Escape seqt® . a2 single character but a valid ¢ "
equence 1 considered as a SINg) r:m_,mn_a
2

printer.
backspacing, mo

They are used in output stat
a combination of digits. An €sCape

constant.

These are employed at th
represented by a backslash (\) follo

s one character, although they con .
s are called as escape sequence.
ge.

hich have special meaning in C languag
svmbol to make use of special function of them,

the program. Execution characters set are Alway,

: ecution of e
e time of ex Note that each one of character CONStap

wed by a characier.
t sist of two characters.
represen
These characters combination

& There are some characters W

hey should be preceded by backslash .
o ' characters and their purposc

& Given below is the list of special |
Backslash_character | Meaning R
\b Backspace
\f Form feed
\n New line
\r Carriage return
\t Horizontal tab
\" Double quote
\’ Single quote
\\ Backslash
\v Vertical tab
\a Alert or bell
\? Question mark
\N Octal constant (N is an octal constant)
L \XN Hexadecimal constant (N-hex.. deml cnst) |
_ How To Use Constants in a C Program =

We can define constant in a C program in the following ways.
1. By “const” keyword 1
2. By “#define” preprocessor directive

Please note that when you try to ch
dnge cons 7 1 e ; i sram,
through error. g tant values after defining in C progr

1. Using the ‘const’ keyword

- We create a constant of any datatype usin
variable declaration with ‘const’ keyword,

it il

|
i . X ﬁ—ﬂ
g const” keyword. To create a constant, W€ n_,mm |

The general syntax for creating constant using ‘const’ ReVmordis as follows |

T R T e e e S R 3 g T T R ST

Program Structure # 47

const datatype constantName;
OR

const datatype constantName = value;

Example :
const int x =10 ;
Here, ‘X’ 1s a integer constant with fixed value 10.
Example Program
#include<stdio.h>
#include<conio.h>
void main()

{
int1=9;
const int x = 10 ;
1=15;
x = 100; //creates an error

printf(“i = %d\nx = %d”, i, x) ;

}

The above program gives an error because we are trying to change the constant variable value (x

= 100).

Example Program Using Const Keyword in C
#include <stdio.h>
void rnain()

{
const int height = 100; /*int constant*/

const float number - 3.14; /*Real constant?*/

const char letter = ‘A’; /*char constant*/

const char letter_sequence[10] = “ABC"; /*string constant*/
const char backslash_char = \?’; /*special char cnst*/
printf(“value of height :%d \n", height);

printf(“value of number : %f \n”, number);

printf(“value of letter : %c \n”, letter);

printf(“value of letter_sequence : %s \n”, letter sequence);
printf(“value of backslash_char : %c \n”, backslash char);

}

Output :
value of height: 100
value of number: 3.140000
value of letter: A
value of letter sequence : ABC
value of backslash char: ?

ScannebyTapScnner

"’ prep

Eu m_n&m_ declaration).

. ..: .._, ﬁ qmﬁi% ﬁﬁ.ﬂhﬂﬂhﬁ ﬂm.ﬁm
- " Eﬂﬂm—uﬁ HGHEBEHEH d._ﬂ—-.—ﬁ.,.

t with value 3.14

g ,ﬁ.:._._m, :

1.; nﬁﬁ@@ﬁuﬁﬁbv
ﬁmhnaﬂsbv
T ' PI13.14
,...aa main()

h

intr, area ;
| printf(“Please enter the radius of circle : ") ;
- scanf("%d", &) ;
- area=Pl*(r*r);
priritf(“Area of the circle = %d", area) ;
)

Example Program Using #Define prepprocessor Directive in C :

#include <stdio.h>

#define height 100

#define number 3.14

#define letter ‘A
#define letter_sequence “ABC”
#define backslash char'\?

f(*value of height : %d \n", height);

ﬁ E_anﬁﬁnqﬂnm of number : %f \n”, number);

| _,_ - printf(“value of letter : %c \n", letter);

i q&ﬁm of letter_sequence : %s \n" letter _sequence);
e of backslash_char : %¢ \n”. backslash char):

rocessor directive. When we Create

fined at the beginning of the program anmsmn, _

rdefine’ preprocessor directive

:
_?

Ay Wy

§ Vvariables o
il

Variables in C language plays an _Eﬁongﬁ _@rﬁ, ca .

of many programming languages. Variables in C languages 2

acts as a memory card where it saves all the data E_.n _

different types of variables in C, according to their J%mma Eﬂ mc
requires differs. As we said, ..qm_._mgmm in C are msﬁmm ma.._m mﬁw,..ﬁ al

be different like int, float, char, double, etc. All the nom& or program depe

describes the type of data for execution.

“a variable is a container (storage area) to hold mmﬁm.mi. |
To indicate the storage area, each variable should be m_ﬁn* - ﬁc

names are just the symbolic representation of a memory location. ,m.E. ex .:ﬁ e:
int ﬁ_mwmwmncam mm .

o

Jvalue n;. a variable can be changed, hence the name ..Enm,_u_m
| char ch = ‘a’; -
//[some code
ch = T; o

__ Rules for naming a variable

] % Vanables in C must not start with the number else the Variable will mmv)
(1 string, is not a valid variable). _i

| < Blank space between variables is not allowed. For mmeEP (str
string_one is a valid variable).

| o xmwicam are not allowed to define as a variable. For example, Q; 1S J.wﬂ,.,w

s used as a keyword in C language). o
+ AsCisacase sensitive language, upper and lower cases are consid
For Example (NUMBER and number will be treated as two different

().
How to Work :

+ While declaring variables it tells compilers the type of data it _,E ds. * _.. |
« Variables tell compilers the name of the variables that are m&_ ng used in t

% As variables specify storage, compilers do not have to worry about
the variables, until they are declared. _f

4% A _____Ji
T

Variables should be declared first before the program as it plays :
variables declaration is as follows : |

data_type variable_name;
where, AT]

< data_type: Indicates types of data it stores. Data
etc.

Scanned by TapScanner

50 # Programming inC

o variable_name: Indicates the name of the

keyword.
e Note : Declaration of variables m
Declaration does the following things.
1. It tells the compiler what the variable name 1S.
2. It specifies what type of data the variable will hold. i
3 Until the variable is defined the compiler doesn’t have to worry about allocating memory Spag
to the variable. | _ |
4 Declaration is more like informing the compiler that there exist a variable with ?:aﬁam

datatype which is used in the program. . | o
5. A variable is declared using the extern keyword, outside the mainQ function.

variable. It can be anything other thay i

ust be done_before they are usedjn the Prograp

For example :
1. int a;
2.1nt a, b, c;
In the first example, int is a data type and a is a variable name. In the second example, we hay,
declared three variables a, b, and c.
After variables are declared, the space for those variables has been assigned as it will be used fy
the program.
How to Initialize

Initialization of a variable is of two types:
< Static Initialization: Here, the variable is assigned a value in advance during writing |
program. This variable then acts as a constant.
< Dynamic Initialization: Here, the variable is assigned a value at the run time. The value ¢
this variable can be altered every time the program is being run.

Different ways of initializing a variable in C
Method 1 (Declaring the variable and then initializing it)
int a;
a=»>y;
Method 2 (Declaring and Initializing the variable together):
int a = 5;
Method 3 (Declaring multiple variables simultaneously and then initializing them separately)
int a, b;
a = j;
b = 10;
Method 4 (Declaring multiple variables simultaneously and the
int a, b:
a=b=10;
inta, b = 10, ¢ = 20:

Method 5 (Dynamic In
int a;
printf(“Enterthe value of a”)
scanf(“%d”, &a);

n initializing them simultaneously)

itialization : Value is being assigned to variable at run time.)

declaration. That means the
declaration.

Program Structure # 51

Types of Variables

There are 5 types of variables which are as follows:

4. Automatic variables
5. External variables

1. Local variables
2. Global variables
3. Static variables

.ocal Variable

Declaring a variable inside the function or block is called local declaration. The variable declared

using local declaration is called local variable. The local variable can be accessed cEw‘.__uw the ?un:.c:
or block in which it is declared. That means the local variable can be accessed only inside the function

or block 1n which it 1s declared.

Let’s take an example.
tfinclude <stdio.h>
int main(void)

i

for (inti = 0;i=<5; ++1

printf(“C programming};

f

// Error: i is not declared at this point
printf(*%d", 1);
return 0;

i

. . . ., ..
When vou run the above program, you will get an error undeclared identifier 1. It’s because 1 18

declared inside the for loop block. Outside of the block, it’s undeclared.

Let’s take another example.

int main()

d
|

int nl: / nl is a local variable to main()
1
I

void func()

J
\

int n2: // n2 is a local variable to func()

!
In the above example, nl is local to main() and n2 is local to func().
This means you cannot access the nl variable inside func() as it only exists inside main().
Similarly, you cannot access the n2 variable inside main() as it only exists inside func().

Global Variable

Declaring a vari

The global variable can

able before the function definition (outside the function definition) is called global

declaration. The variable declared using global declaration is called global variable.
be accessed by all the functions that are defined after the m_cw..m_
alobal variable can be accessed any where in the program after 1ts

¥
ok
1

Scanned by TapScanner

ariable

Example 1 : Global .ﬂ
#include <stdio.h>

:d displayl(); |
Hnn = 5; ,____xm_u_...m_ variable
int main()

{
++mn;

display():
return 0;

}

void display()

{
++n;

printf(n = %d”, 0J;
}
Output :
n=7
Static variable
Static variables are initialized only once.
program. Static variables can be define
default value of static variables 1S
Here is the syntax of static variables in C language.

static datatype variable name = value;
Here,
datatype — The datatype of variable like int, char, float etc.
variable name — This is the name of variable given by user.
value — Any value to initialize the variable. By default, it 1s zero.
Here is an example of static variable in C language,
Example :
#include <stdio.h>
int main()
{
auto int a = -28;
static int b = 8;
P o e e
if (a! =) dlic variable b : %d\n” b):

printf(“The sum of static var;
v :
return 0; ariable and duto variable : %d\n",(b+a));

}
Output :
Here is the output

The compiler persists with the variable till the epd of
d inside or outside the function. They are local to the block) RO
ero. The static variables are alive till the execution of the progng

| -
D
-
-
| The value of auto variable: -28 0
The value of static variable b: 8 &)
The sum of static variable and auto variable: -20 S
Difference between Variable and Identifier ap
An Identifier is a name given to any variable, function, structure, ﬁ,nEﬁ_. or any other entity 1n a _I
programming language. While a variable, as we have just learned in this tutorial s a named memory ~.
location to store data which is used in the program. k.. B8
Identifier Variable g =
[dentifier is the name given to a variable, While, variable is used to name a memory D
function etc. location which stores data. —
An identifier can be a variable, but not All variable names are identifiers. -
all identifiers are variables. o~
Example : Example : hn\bu
//a variable //int variable
int studypoint; int x;
/Jor, function //float variable
int studypoint() float y; |
{
h
| § Data Type

A programming language is proposed to help programmer to process certain kinds of data and to
provide useful output. The task of data processing is accomplished by executing series of commands
called program. A program usually contains different types of data types (integer, float, character etc.)
and need to store the values being used in the program. C language is rich of data types. A C
programmer has to employ proper data type as per his requirements i

C has different data types for different types of data and can be broadly classified as : EEE

T'here are three classes of Data-Type

< Primary Data Type < Derived Data Type |-
< User Defined Data Type

Primary Data Type
The C programming language supports primary data types. A primary type is predefined by the
language and is named by a reserved keyword. |
Integer data type : e %
< Integer data type allows a variable to store numeric values. 0
% "Int” keyword is used to refer integer data type.
« The storage size of int data type is 2 or 4 or 8 byte. .

.
of 5

« Itvaries depend upon the processor in the CPU that we use. wmim are using 16 bit processor, 2
byte (16 bit) of memory will be allocated for int data type. 0 DIt ProCEaeE

L
a:',n
el

s

Ll

]
i o
e

54 # Programming in C
| . & Like wise, 4 byte (32 bit) 0

f memory f0

r int datatype-

r 32 bit processor and 8 byte (64 bit) E,Emﬂ_uq Program Structure # 55
oy
_

Array types

: ted fo +£32.767 <

bit processor 18 m__anmﬂm_zmm from 32,768 :M M_m to +2.147.483.647. < Structure types
int (2 byte) can Store m -2,147,483.0 i : Union types

& tore values fro s the above limit, you can g fo, ® &> |

& int (4 byte)cans integer value that Crosses : s:mmﬂf < Function types

¢ Ifyouwant to use the mits are very high. ﬂ_

. . < Pointer types
“long long int” for which the I p

< Enumeration
: e.
Note : ing int data typ |
. " alues using PR » tr atedi rrav

& We can't store decimal aEH decimal values decimal values will be truncateg and v " 1. A

int data type to s !
& Ifweuseintda
only whole number.

ed to store decimal values in a variable. primitive data types like — float , int or char.
Sl - types then it forms an array. And they are

rmed by collecting the
S0 when you make the collection of any of these data
stored in contiguous memory location.
Character data type: N atle to store only one character, An array _.E.wn can be mw_..Ewa HjE,E M:w valid n_u.ﬂﬁ_ﬂma type. Completi
_ ster data type allows a varia _ ¢ e - v Bt that the :::.&ﬂ and type o ﬂ:E.u,.. membe > ex .
? O:E,mrﬁw f character data type is 1. We can store only onc be completed in the same or a different compilation unit,
v mEEmn it ﬁ ._.w,_:__f.m__w_. arrays are used to vmﬂ?:,: :1&3:55 on
,@ﬂm. 2k yrd is used to refer character data type. | o ‘the array type is determined by the data Gﬁn of the
el har Kepwic , tored using char datatype. You can’t store more than one Chapy clement 1n an array has the same type. For examp
+ For example, *A’ can be stored using i b characters:
: e.
o WMHWJH“&ME Whmzmm E_in to know how to store more than one r__::.:ﬂﬂ.x In a Ezmzn_

acter using iEEEﬂ&

Scanned by TapScanner

some homogeneous set of values. The size of
array and the number of elements in the array. Each
le, the following definition creates an array of four

char x[] = “HEY” /* Declaring an array x */:

Each of the elements has the size of a char object, 8 bits. The size of the array is determined by its
Floating point data type initialization; in | the EE.___.cm:w ,....ﬁ::ﬂ_n. _r_n array has %Eﬂ mxv:n:.a ..mn”.ﬁ:ﬁ plus c:.m_ ==—=
. ol f »s. They are character. Four elements o its each results in an array with a size o its or we can s mply
. ata type consists of 2 types. They are,
Floating point data typ 'say 4 byte.
2 ot An array is allocated contiguously in memory, and cannot be empty (that is, have no members). An
2. double array can have only one dimension. To create an array of “two dimensions,” declare an array of arrays,
1. float : _ and so on.
+ Float data type allows a variable to store ﬁ_nn_::_: values. _ It is possible to declare an array of unknown size; this sort of declaration is called an incomplete
¢ Storage size of float data type is 4. This also varies depend upon the processor in the CpU

“int” data type.

< We can use up-to 6 digits after decimal using float data type.

% Forexample, 10.456789 can be stored in a variable using float data lype. The size of an array declared in this manner must be specified elsewhere in the program.
2, double : ; __z_w. Structures

e) o Ay S T g 1erits after decl) h _

% Double data type is also same as m,_E: data type which allows up-to 10 digits afte | Structures are also one of the derived data ,

< The range for double datatype is from 1E-37 to LE+37, |
void data Type : void(used for function whe

F Derived Data Type

array declaration, because the size is not specified. The following

example shows an incomplete
declaration:

int x|[];

ypes in C and they can form the collection of dissimilar

data types like an int. a float and array of char. So whenever you require to put dissimilar data type

n no value is to be return) logether you can use a structure.

S0 a structure type is a sequentially allocated nonempty set of objects, called members. Structures

__let you group heterogeneous data. Unlike arrays, the elements of a structure need not be of the same
T _ , _ . nakesldata type. Also, elements of a structure are accessed by name. not by subscript. The following example
"4 LYPEs are defin Self. Like a collection of integ 1 stored contiguOUS R 4. 1 Fes & struchire loyee, with tw 1abl 2) of 25
i 5o A ot CPET ¢ E types UgUcclares a structure cmployee, with two structure variables (el and e2) of the structure type employee :
o ereate by combining various primitive data types
derived data infini . \ T pes?
types, an infin YPES can be formed. The array and structure typ®
collectively called th . :

: I struct emplovee _
: - 4B8Teate types. Note that the arorconns o - include union type P10} :
a union may contain an dggregate member. he aggregate types do not include t ."
: char name[30]:
Types of derived data types in C int age:
There are basically fi

ve derive types in C - _

56 # Programming in C

int empnumber;

b
__ struct employee el, ez; , except an incomplete J_.H.__n, ,.,:_,_l_ m.....:__m void type E_
b Structure members can have any type s to objects of their Own tYpe, but they ¢l
r uld have an incompleg, X

... function type. Structures can contain pointe

contain an object of their own typ v

For example: |
struct employee |

{
char name[30]; |
struct employee point; /* This 1 invalid. */
int *f();
I3
The following example, however, is valid:
struct employee

{

char name[30];
struct emplovee *point;/” Member can contain pointer to employee structure,

int (*f)(); /* Pointer to a function returning int"/
b
The name of a declared structure member must be unique within the structure, but it can
used in another nested or unnested structure or name spaces to refer to a different object. Fy

example:
struct
{

int x;

e as a member; such an object wo

* /

struct

{

int x; /* This 'x’ refers to a different object than the previous ‘x'*

|5

o
. ,;w compiler assigns storage for structure members in the order of member declaration. will
_M__M_.nmm_:m memory m&ﬁ_nﬁmm for subsequent members. The first member alwavs begins at the starting
M_.H.Wuw afrm.ﬁ_._._ﬂc”” itself. mw____“__mma:m_: members are aligned per the alignment unit, which m
r depending on the m izes i . : .
bits) so nﬂu_._ Emn-:cm...m ¢ “==_ er m_mmﬂ,i the structure. A structure may contain padding (unuse
ar o : :
ray of such structures are properly aligned, and the size of th

Structure is the amount of storage
necessary for all members - f
. ; : s plus anvy p: 'd space needed
meet alignment requirements. “ Y padded space ne

3. Union

Union is also a derived data type in C and they are much
used by them is equivalent to the size of union membe

. A union type can store objects of different type
union members can occupy the same location at dj

| like structure but the amount of memof,
r which took maximum storage space .

- w - . " - : iy _
S at the same location in memory. The differe!

fferent times in the program. The declaration m:_

Program Structure # 57

includes all members of the union, and lists the possible object types the union can ,_.:...,_r,_q .H_.ﬁ
& bers to the union

union can hold any ::n._sn._ﬂ_uﬁ at a time-subsequent assignments of other mem
overwrite the existing object in the same storage area. . P
Unions can be named with any valid identifier. An empty union cannot be declared, EM_H. o
ion contain an instance of itself. A member of a E:E._ cannot have a void , function,
incomplete type. Unions can contain pointers to unions of their type. | : ;
Another way to look at a union is as a single object that can represent objects of different types a
_ es. Unions let you use objects whose type and size can change as En.ﬁamﬂma progresses,
achine-dependent constructions. Some other languages call this concept a variant

uni

L

different tim
without using m
record.

The syntax for defining unions is very similar to that _,n._,. ure |
a unique type. Names of union members must be unique within the union, b
| or unnested unions or name spaces. For example:

structures. Each union type definition
ut they can be
crealcs
duplicated n other nestec

union

int x:
union

0t x: /* This ‘x’ refers to a different object than the previous X%

'he size of a union is the amount of storage necessary for its largest member, plus any padding

needed to meet alignment requirements. .
[ike if vou have a union of an array of 5 integer , a float and a array of 5 char then — the union

storage space would be equal to 20 bytes for 64 bit compiler.

4. Function
A function type describes a function that returns a value of a specified type. If the function returns

no value. it should be declared as “function returning void ™ as follows:

void function ();
- - . il : - - - ».
In the following example, the data type for the function is “function returning nt -

int add()

int a=10.b=10,c¢:
c=a+b:
return c;

1
!

How to calculate size of a function?
Size of any function is calculated as: | . |
Size of function = Size of all local variable which has declared in function + Size of those global

variables which has used in functiont Size of all its parameter+ Size of returned value if it 1s an

address. Example:

Frin ek

Scanned by TapScanner

i size of add function:

inta=10,b=10.C;
c=a+b;
return C;
y . B 2,
so the answer is it’s 12 byte for 64 bit compiler.
5. Pointer
Pointer are fourth type

always fix but the type of pointer

Pointers are considered by many {0 b i sl |
is just a variable that stores the address of another variable. A pointer can store (he addregs smm_ssr,_

of any data types. This allows for dynamic memory allocation in C. Pointers
variables by reference.
The pointer is defined by using a **’operator. For example |
int *ptr;
This indicates ptr stores an address and not a value. To get the address of the variable, we gt
dereference operator ‘&." The size of a pointer 1s 2 bytes. Pointers cannot be added _E,h_”__ ____mnﬁ
divided. However, we can subtract them. This will help us know the number of c_E:n:_m__ led,
between the two subtracted pointers. preses
Example,

#include <stdio.h>

be complex in C, but that 1s not the cage Si

int main()
{

int num = 10
printf(*Value of variable num is: %d”, num):
: _

printf(*\nAddress of variable num 1s: %p”, &num):
return 0; _
|

}
|

H_ i . il
n E._H._“..,,.ﬂm_dim__ nteger then there type would be integer pointer -_E_
. Y then there type would be array pointer. |

Enumeration js speci 0
| | is assig®

enum weekdays; S of the week
enum weekeng:
The enum
€yword |
H?m var: 1§ m—mh_ us
aniables of enyp, type as mc:_““c define the Variables of enum type. There are tW0 Wa ¢
enum wegj . Sk ﬁ
Sunday, n
» Mondg :
Y tuesday, wednesday, thursday. friday. mm::imi_

Program Structure # 59

enum week day;

#include <stdio.h>

enum week{Mon=10, Tue, Wed, Thur, Fri=10, Sat=16, Sun}:
enum day{Mond, Tues, Wedn, Thurs. Frid=18, Satu=11, Sund}:

int main()

|
1

printf(“The value of enum week: %0d\t%d\t%d\t%d\t%d\t%d\t%d\n\n”,
Mon , Tue, Wed, Thur, Fri. Sat. Sun);
printi(*The default value of enum day: %d\t9%d\t%d\tod\t%d\t%d\t%d”.

Mond, Tues, Wedn, Thurs, Frid. Satu. Sund);

refurn (:

|
I

Outpul
The value of enum week: 10111213101617
The default value of enum day: 0123181112
In the above program, two enums are declared as week and day outside the main() function. In the

main() function, the values of enum elements are printed.

enum weekiMon=10, Tue, Wed, Thur, Fri=10, Sat=16, Sun};
enum day{Mond, Tues, Wedn, Thurs, Frid=18, Satu=11. Sund}:

int main()

printf(“The value of enum week: %d\t%d\t%d\t%d\t%d\t%d\t%d\n\n”,
Mon , Tue, Wed, Thur, Fri, Sat, Sun);

printf(“The default value of enum day: %d\t%d\t%d\t%d\t%d\t%d\t%d”.
Mond , Tues, Wedn, Thurs, Frid, Satu, Sund):

User Define Data Type

By using a feature known as “type definition™ that allows user to define an identifier that would

represent a data type using an existing data type.

Note :
General form :
typedef type identifier;
or (to better understand)
typedef existing data type new_user_define_data_type;
Example Using user defined data type
typedef int number;
tvpedef long big number;
typedef float decimal;

typedef double big_decimal;
J**xxxxxxx pow we can use above user defined types to declare variables********/

Scanned by TapScanner

nal pie= 3.1415926535

o L NES I
b1 declIiL
fata =

of typedef is that we can create meaningful data type names for increasing the

specific mathematical or logical

S tells the compiler to perform :
An is a symbol that P d variables. to form expressions,

. : Eo-.s tors are used to connect operands, i.e. constants an :
EHE cam, le. in the expression a+b, a and b are operands and + is the operator. Depending _u:.zﬁ
A perator operates, the operators in C language can be grouped into

‘number of operands on which an o g
three categories: unary operators, binary operators and ternary operators. A unary G.ﬁmqmﬁﬂ takes only
one operand. as in -x, whereas a binary operator operates on two operands, as in atb. A .HH,:.E%
operator takes three operands, as in (a > b) 7 a : b, where the conditional expression operator (7 :) 1s a
~ C language is rich in built-in operators and provides the following types of operators :

1. Arithmetic operators 5. Bit wise operators

2. Assignment operators 6. Conditional operators (ternary operators)

3. Relational operators 7. Increment/decrement operators

h.._q 4. Logical operators 8. Special operators

I. Arithmetic operators

Arithmetic operators are used to perform arithmetic operations on arithmetic operands, e.,
operands of integral as well as floating type. There are five arithmetic operators, +, —, *, /, and %,
shich respectively represent the processes of addition, subtraction multiplication, division, and
‘modulus. The modulus operator (%) gives the remainder when one integer is divided by another
integer. All of the five operators have been described with examples of codes in Table.

Arthmetic Operators |
Algebraic expression Exampls of code
X+ int X, y, sum;
sum=x+y;,
X -y float x, vy, z;
Z=X-Y, 4
XXyorxy int a, b, c;
g=hxe: e
A % B or A/B double A, B, x;
x = A/B; =
In gives the remainder when an| intX. Y. M. M =X/Y;
integer is divided by another integer. X=12;:Y=5M=2_|

It should be noted that each of these operators has a precedence
[f an expression contains operation of En_mu:nmmaﬂ_.".mumwm&mauu___ he
pecause it has higher precedence level than that of E&ﬁa&hﬂ.ﬁﬁv
different operators. In many arithmetic* operations, the
employed to change the precedence level, that is, priority in eration. T
when a particular operator will be implemented when there are mnqo_..u“_..qn

Comparative Priority of Arithmetic Opera .__."-H,
T - ¥ T

i
- =

| Operator 7 aﬂhﬂwrﬂ 2
() First If nested. the inner most is first ;
| %,/ and'% Next toil If several from left to right > re
+, - Nextto *, /, %. If several, from left Eﬂm,m.*.h w
#include<stdio.h> o)
int main() " .t._
{ T
int a=40,b=20, add,sub,mul,div,mod: 4
add = a+b;
sub = a-b;
mul = a*b;
div = a/b;
mod = a%b;
printf(“Addition of a, b is : %d\n", add);
printf(“Subtraction of a, b is : % d\n”, sub); o

printf(“Multiplication of a, b is : %d\n", mul);
printf(*Division of a, b is : %d\n”, div);
printf(“Modulus of a, b is : %d\n”, mod);
}
Output :
Addition of a, b 1s : 60
Subtraction of a, b is : 20
Multiplication of a, b is : 800
Division of a, bis: 2
Modulus of a, bis: 0
2. Assignment operators: ,
We have used the assignment operator (=), which is often called nﬂ:ﬂﬁmﬂﬂ...,
this operator we write the name of variable or I-value to which a value is to be assi
side we write the value to be assigned to it or r-value. The l-value is the mem

r-value is stored. Let A, B, and ch is the names of three variables declared ¢ _.;H |

int A; // declaration allocates a memory space forA
A = 5; // assignment- stores value 5 in the memory

) : . on M,GH.@:HH'; v, -u-..:-._ |
float B; // declaration allocates memory for B sn-italer HeLY
. .% _.__._

B = 12.6: // store value 12.6 in the E.mﬂawwr .
char ch: // declaration allocates memory for ch.

o
-

R T

O

&
o

Scanned by TapScanner

| £ :..iwxnun assignment of ch, note that the character value *H’ is enclosed _un:_.,,nn: Emm_n n_:s:wm H:.w
 Whenever the value is a character, it has to be enclosed between m_.:m_m quotes. On the other hand, jf
4 .M:,,.w%d&:n is a string of characters. it is enclosed in double quotes as illustrated below.

| 15 char Name[10] = “Dinesh”;

‘ b Here, Name is a string, 1.e., it is an array of characters. Because of this reason we have :mmn the
§ array symbol [] with number 10 after Name. Number 10 indicates the number of characters in the
| string including the null character (*\0") which marks the end of the string. The null character is
k h automatically appended by the system whenever the value assigned is enclosed in double quotes.

, 3. Relational operators

The C language provides four relational and two equality operators for comparing the values of
expressions. The relational operators are less than (<), greater than (>). less than or equal to (<=) and
greater than or equal to (>-). The equality operators are equal to (=) and not equal to (/=). These
operators are binary infix operators, i. e., they are used in the form a op b, where a and bare operands

(constants, variables or expressions) and op is a relational or an equality operator. Table summarizes
these operators.

Note that the token for equality operator is = A beginner often makes the mistake of writing the
equal to operator simply as -, which is an assignment operator.

Thus, a = b means the values of variables a and b are compared for equality, whereas a = b means
the value of variable b is assigned to variable a.

Table Relational and equality operators in the C language

a | Operator Meaning | Example _ Associativity
___, < Less than a<b \ Let to right
| > Greater than a>b |
“_ == Less than or equal to a<=b __
= Greater than or equal to a>=bh ‘
_. Equality — Equal to a==b \
1 I= Not equal to al=b I__ 4
__ 4. Logical operators

The C language provides three logical operators that

Xpressions and form complex Boolean expressions, j.¢..

. can be used to join relational an< equality
@mﬁe@_:nm.. These operators incy

cxpressions with operands having true of

-
‘!

£ s ized in Table. delogical AND (&), logical OR (1) and logical NOT (1), They ar
- Note that the logical not (1) i
. .__:... AT .r 1 G) 1S a __.ENQ .mu._-ﬂmun Eﬁwﬂﬁmﬁu—-. : mm U ﬁ_ ’ _ .m 2
- I¢lational exp €T tWo operators are bina 22y | expr, where € S8

ry infix operators. They are used, as in exprl 0P /
ions, _

ot Logical operators in the C lang
| Operator | Meaning |
) |Logicalnot ! (a<0)

&b |Logicaland |(a>=0) && (a <= 100)

I .|-_.._¢wmnmwﬁ. (a<0)] I (a>100)

Logical AND Operator : As the logical AND(&&) operator is a bin:
as in exprl && expr2 where exprl and expr2 are relational expressions. This expressic
true, i.e., | if both exprl and expr2 are true: otherwise, it evaluates as false, e

Consider the expression

(a >= 0) && (a <= 100) 1

This expression evaluates as true if both the relational expressions (a >=0) and @a - o
i.e., if the value of variable a is in the range 0 to 100 (both inclusive); otherwise, it evaluates as fal
e., 0. e -

Logical OR Operator : The logical or (11) operator is also a bi G
in exprl || expr2 >

iy
s t.r—.r. E .-.)
where exprl and expr2 are relational expressions. This expression evaluates as true, i.e., 1 if i
exprl or expr2 1s true (or both of them are true); otherwise, it evaluates as false. . -
Consider the expression
(a <0)11 (a > 100) |
This expression evaluates as true if the value of variable a is less than zero or grea
outside the range 0 to 100; otherwise, it evaluates as false. i. e.. 0. b

Logical NOT Operator : The logical not (!) operator performs logical Ea&- .
This i1s a unary prefix operator and is used. as in i
! expr Ty

o
e a—
. i

This expression evaluates as true if expression expr is false, and false otherwise.
expression

W -
bl B

'(a<0) -
If the value of variable a is less than zero, this expression evaluates as false; otherwis
as true. Not that this expression is equivalent to the relational expression a > = 0. L.

Consider another expression given below. + 18
'(a<0) || (a>100)) .
I the value of variable a is outside 0 to 100, the expression (a < 0: 11 (a > 100) eval

and the given expression evaluates as false. On the other hand, if the %&.ﬁ..

the above expression evaluates as true. Thus, the above expression H;Bﬁ
(a>=0) & & (a <= 100). - n

S. Bit wise operators

All the objects that are stored in a computer are ultimately converte
4T¢ sequences of O's and 1's. Each digit in a binary number is stor

-

Memory. A bit is defined as the smallest unit of Emnﬁwﬁﬁunﬁ uter,
Number by manipulating the bits on which the number is stored.
10 use operators to man ipulate bits. 3

Scanned by TapScanner

. ...E.oﬂnmm six bitwise operators to m
characters). They include not, 7.€., complement .
left shift (<<) and right shift (>>). These operators work dire
s, i.e., On sequences of bits (0 and 1) representing the cnm..m_:am.
s five compound assignment operators (&=, | =, 7=, <<= and >>=).
The complement operator (~) is a unary ﬁ_.nmm operator an
operators are binary infix operators and are used as in a op b.
~ First consider these bitwise operations on individual bits.
~if both operands are 1, and zero otherwise. The bitwise or operator evaluate

ds is 1, and zero otherwise. The bitwise xor operator
Finally, the bitwise not operd

ro and vice versa.

ctly on the bit patter,

#ﬂgﬁu is 1, and zero otherwisc.
operand, i.e., it returns | if the operand is ze

, m...-n::n.ﬁ::n_ operators {ternary operators)

The conditional expression operator (
conditional selection operator(? @) 1s more convenien
options to choose from. It takes three operands and is usc
expressions depending on the outcome of a test expression as shown below.

test_expr ? exprl: expr2.

Here, test expr is followed by a question mark
separated by a colon (:) are the alternative expressions,
outcome oftest_expr. Observe how the
test expr evaluates as true (i. e., non-zero), th
expr 1; otherwise, it is equal to the value of exprZ.
The value of this expression is either a or b, depending o1
respectively. Thus, the expression determines the smaller of the two numbers a and b.

7. Increment/decrement operators
Increment operators are used to increase the value of the
are used to decrease the value of the variable by one in C programs.

Syntax :
[ncrement operator: +-+var_name; (or) var_name-++;
Decrement operator: - -var_name; (or) var_name - -;
Example :
Increment operator: ++ i; i+ +:
Decrement operator: — i; i —;
++ and ~ operator as prefix and postfix :

e returns the value.

I ¢ —W%ﬂ: use mmm ++ operator as postfix like: var++. The original value ot v
then, var is incremented by 1.

| T um%,e.. ?nmmEmwn operators in ¢ : In this program, value of i 1S incremen
ﬁ E:ﬁ ‘i++" operator and output is displayed as “1 2345678 9".

L= ¥

¥ -

. .h
j i
-..-L me il

ad

i
e
- T

...
L
i

*
| |

anipulate the bit patterns of integral g
(~), and (&), or (1). exclusive or, ¢ n&

In addition, C Emmﬁﬁw

d is used, as in ~a, whereas all othg

The bitwise and operator evaluates ag |
s as | if either or bog
evaluates as 1 if either of the operands (by
tor complements the value of the

7 +) is the only ternary operalor in the C language. The
t to use than if-else provided there arc only twe
d to evaluate one of the two alternative

(7). is the test express and exprl and expd
only one t which is evaluated, depending on the
questio mark (7) and the colon (;) separate these €Xpressions, If
e value of the entire expression is equal to the value of
7 Consider. for example, the expression a b? a:h
. whether the expression is truc or falsg

ariable by one and decrement operatos

L4 m.wa: use the ++ operator as prefix like: ++var. The value of var is incremented by 1 then,
ar is returned fis

1

{

inti=1;
while(i<10)

{

printf(“%d ".i);
i++;

'

}
Qutput :
123456789
Fxample Program For Decrement Operators in C : In this program, Y
nted one by one from 20 up to 11 using “i-”* operator and nﬂﬁnﬁ%& St

LY

decreme
i6.15 141312 117,
//Example for decrement operators

#include <stdio.h>
int main()

{
int i=20;
while(i>10)

{

L]

printf(“%d ",i);
1--,

e

v
Output :
20 19 18 17 16 15 14 13 12 11

8. Special operators
Below are some of the special operators that the C pro

m.—g. AgEC

—

es

Operators - D&

& This is used as pointer to a variable.
Example : & a will give address of a.

I

. This is used as pointer to a variable. el

Example : *a where, *is pointer to nm /
This gives the size of the variable. Examp

Sizeof()

I Example Program For &and ” Operators in C

e
“IFi

-
ot B :
ar
gt
bt

In this program, “&”" symbol is E&Emﬁmrm?ww

the value of the variable that the pointer EE‘%% {
about pointers. . !

Scanned by TapScanner

1 for Sizeof() Operator in C

is used to find the memory space allocated for each C data types.

.......

SR e d ..‘.”_.. on performed on variables var] and var2 the result stored in the variable

Eg.—ﬂﬁﬂ— m ._n. ﬁﬂaﬁ.ﬂg_ﬂm
of typ Bunbm operations:

EE another one. It is also called as data nﬂ:ﬂnaﬂonh i

S S e Eﬂgﬂ this happens, the value stored in the variable “res Ay
e consider the fraction part which is normally obtained in thé

5 Explicit type casting

implicit TyPe Casting Jm.,
type casting means conversion o
it asting 18 essential when you want 8
__..u.sa ﬂwﬁuﬁ stored inside the variable.
[mplicit type conversion happens automatically v

During conversion, strict rules mﬂﬁii
an operand having lower data type is automatically cc

Jﬂﬁr. then :
type of type conversion can be seen in the following example.
#include<stdio.h> A

" v

_Eﬁ__n:

int main()

1 ..
short a=10; //initializing variable of short data type

int b: //declaring int variable
b=a: //implicit type casting
printf(“%d\n”,a);
printf(“%d\n”,b); or R

}

Output

10

10

#include<stdio.h>

int main()

{
€) short a=10; //initializing variable of short data type

int b; @)/ declaring int variable
o b=a; /implicit type casting

printf("%d\n", a);
printf("%d\n", b);
v =i
. In the given example, we have declared a variable of
10.

I-.
.f

2. On the second line, we have declared a ble &

3. On the third line, we have assigned E %&
implicit type conversion is wﬂ?..ﬂ?.—!? .- |
copied into the variable a ,which is of an 1) type.

i R

Converting Character to int .1&.

i_.

Consider the example of adding a charac -
#include <stdio.h> _
main()

Scanned by TapScanner

68 # Programming in C

int number = 1;
char character = ‘k’; /*ASCII value is 107 */
int sum;
sum = number + character;
printf(“Value of sum : %d\n”, sum);
}
Output:
Value of sum : 108
Here, compiler has done an integer promotion by converting the value of 'k’ to ASCY] befy
performing the actual addition operation.
Consider the following example to understand the concept:
#include <stdio.h>
main()
{
int num = 13;
char ¢ = ‘k’; /* ASCII value is 107 *
float sum;

sum = num + c;
printf(“sum = %f\n", sum)
Output:

sum = 120.000000

First of all, the ¢ variable gets converted to integer, but the compiler converts num
“float” and adds them to produce a ‘float’ result.

and (ol

Important Points about Implicit Conversions
@ Implicit type of type conversion is also called as standard type conversion. Wi
any keyword or special statements in implicit type casting
+ Converting from smaller data type into larger data type is also called as type promotion.”
the above example, we can also say that the value of s is promoted to Lype integer.
« The implicit type conversion always happens with the compatible data Lypes
We cannot perform implicit type casting on the dat
other such as:

I. Converting float to an int will truncate the traction part hence losing the meaning of the value
2. Converting double to float will round up the digits.
3. Converting long int to int wil] c:

ause dropping of excess high order bits
Explicit Type Casting

In implici | De i 05’
plicit type conversion, the data type is converted automatically. There are some scenarios®

which we - -
tw may have to force type conversion. Suppose we have a variable div that stores the divisiot®
0 operands which are declared as an int data type.

int result, var1 = 10, var2=3:
.mu.___u.._mz?m_.m_.

do not requs

a types which are not compatible with easd

Program Structure # 69
[n this case, after the division performeq on vari . o IS
result” will be in an integer format, Whene ables varl and var2 the result stored in the v .

| ver this happens, the value stored 1 iable *4 i
e : : in the variable *

losEs 1S ﬂ.,_.ﬁr.m—._:.._m Uﬁﬁmcmﬁ 1t Qﬂﬂm not consider ﬁuﬂ m.—.ﬁn—.m._ﬂﬂ.__ ﬂ'ﬁﬂ.. i____Hmn#.__ ..mm n MH.V. T T A
division of two numbers. ormally ob

W

To force the type conversion in such situations L

T ¥ » We use explicit type casting. teds. 4 3
[t requires a lype casting operator. The general syntax for type casting operations is as mﬁﬁg .
(lypename) expression SV

SRS
Here, 4
& The typename s the standard *C language data type. il ol
4 An expression can be a constant, a variable or an actual expression. . M-
et us write a program to demonstrate implementation of explicit type-casting in ‘C’. o

#include<stdio.h>
int main()

_.r____.* ad = ._.H b o

wl

int b = a; //Compiler will throw an error for this

int b = (int)a + 1:
printi("Value of a is %f\n”, a):
printi(“Value of b is %d\n",b):

reiurn u:

:._:::.

Value of a is 1.200000
\ ___.__.. 0] T 1s 2

#include <stdio.h>

INt mainti)

float a =

_.H_o a

@ intb = a: ﬁ::ﬁ.:ﬁ will throw a

intb = (int) a + _ho Al

oz::: Value of a is %fin", a);
printf("Value of b is %d/n", Eo

return (:

I. We have initialized a variable ‘a’ of type float.

2. Next, we have another variable ‘b’ of integer data type. Since the variable ‘a’ and ‘b’ are (
different data types, *C” won’t allow the use of such expression and it will raise an error]
some versions of ‘C,’ the expression will be evaluated but the result will not be de red.

3. To avoid such situations, we have typecast the variable “a’ of type float. By using explicit ty)

casting methods, we have successfully converted float into data type integer.
4. We have printed value of *a” which is still a float

Scanned by TapScanner

- be an integer ‘b.’ il

output to standard output baseq

Esiapaited ith the data to be output, are the

___- g
unction printfl) is used T ST g i

—um_—.._m TN ﬁ_...

Nu- a8 w
ﬁ nﬁﬂm&mﬁmﬁ" ification string. This string contains, for each y
E,m__o ormat Spec

mﬂma
‘with the symbol % followed by a character called th

maaﬁ
. _

2", datal);
%on_m& after % is called a conversion character because it allows ope ﬁ_ﬂm h

d to Ea&nﬂ. type and printed.) |
..mnﬂﬁﬂ._ma:aﬂ_uw table conversion character and their meaning

Meaning

d dﬁ %E is converted to decimal (integer)

C The data 1s taken as a character.

s The data is a string and character from the until a NULL, character is reached.

f The data is output as float or double with a default Precision 6.

Meaning

For new line (linefeed return)

For tab space (equivalent of 8 spaces)

B T

Standards and formatted IO H.mu_
Formatted _:_u_:,.

Syntax :
scanf (format, num1, numz,......);

The ?:ﬂEn mn_._ﬁﬁ reads and converts ct

For Example :
scanf(%c %d",&Name, &RollNo);

e Note : the data names are __m.“mn_ as mzm__._w mz
respectively. This is how data na 5 are spy
type data names, the data name is not pre

Example with program
Write a function to accept and display the element number a
number 1s an integer and weight is fractional.
Solve here :
#include<stdio.h>
#include<conio.h>
main()
{
int e num;
float e wt;
printf (“Enter the Element No. and Weight of a Prot:
scanf (“%d %f"J&e_num, &e wt); .
double d; ire,
printf(“Storage size for int data type:%d \n” sizeof(a))
printf(“Storage size for char data type:%d E".._”___m__u eC
printf(“Storage size for float data type:%d \n” siz
printf(“Storage size for double data type:%d\n”,siz
return 0; :

}

Output ;
Storage size for int data type:2
mru_.mmm size for char data dﬁmm
Storage size for float data type:4

: . e e
Storage size for double data ty e:8
-

Scanned by TapScanner

P —

72 # 1—6@33:—-:@ inC

..M_.ﬂ._.?ﬂ

' d operators written -] | :
J Expression o vanables consians Lo oxpreanie T Y
An expression Is a EEE%MMMEE,% m{m_.cwamuamw:ﬁn E ol of C eXpressia L.WE_M in p_
syntax of C language. In C n{mm assigned 10 @ variable: % mg..”m %
: hat can |
value of a certain type [i ._
the table .wm_.ﬁ: below. ¢ _wm_u_.mvm:_: &
Algebraic Expression a%b—C .in## : ; o ._u
ax b-c (m+n)* (x+Y) 0&6.@## Control Structures
(m + n)(x +y) a*b/c \Fb?- ?‘?’r |
(ab/c) ey ¥x+2%*x+] - - -
3x2 +2x +1 T Conditional Statements in C Programming are used to make decisions based on the conditions. __
4 Aol Conditional statements execute sequent;
(x/y) +c

Evaluation of Expressions

Expressions are evaluated using an as
i =oipression : 'hen the statement 1S encountered
Variable is any valid C variable name. When the stater ble i this [68 Band
evaluated first and then replaces the previous ﬂ__:._._ of the varia le on | ¢ ,. _ han
used in the expression must be assigned values before evaluation 1s attempted
Example of evaluation statements are
X=a*b-c
y=b/c*a
Z=a-b/c+d;
The following program illustrates the effect of presence of parenthesis in ¢
main ()

{

signment statement of the form

| side. All Varigh

TESSTONS

floata, b, c x, y, z;
a=29;

ally when there is no condition around
atements, the execution flow
This process is called decision making in
“The Control Statements are used for controllin
arc lour types of control statements in G __
| Decision making statements

put some condition for d r__:ﬁr of st

. may change based on the result
evaluated r..,, the condition. :

nm..__

g the Execution of the program”

|
the statements. If you m
[here m

)]

Selection statements

il

[teration statements

lm

Jump statements

§ Derision Making Statement

If-se Statement .

It 1s one of the powerful conditional statement. If statement is

t'a program. If statement is always
T..r.?:.r. CXEC(:::._.."

responsible for modifying the flow | &
used with a condition. The condition is evaluated first
any statement inside the body of If. The syntax for if statement is as follows:

01 cXecution o

if (condition)

Instruction:

['he condition ey aluates to either true or false. True

Is always a non-zero value, and false is a value
contams zero.

that [nstructions can be a single instruction or a code block enclosed by curly braces %

Example :
Include <stdio. h>
INt main()

int numl = 1:
INt num2 = 2: ..J..-_ |
. i -l P m. Y .__
if(numl < num2) //test-condition e
| -_ .‘41__
\ ey W." 3
y P . oy e
printf(“numl is smaller than num2”); n
L ._
|

return 0;

Scanned by TapScanner

| ct10 check € quality of tWo numbers_

el
i __ s

. we have initialized two variables with numl, num2 with value il _

Fﬁeﬁmﬁﬁ& a test-expression to check which number is the smallest and which
. We Kane ﬁ& a H_Eanm_ expression in if construct. Since the value L

— =
—--n_—-. —

_ 2

tre WHMWME evaluates to true, the statements inside the Hm._“__%_m |
{0 the statement immediately afterthe if- _u_......nw Eves

wﬂumﬁn of instructions needs to be mmmnﬁnﬁ_

_ Eﬁ the condition is m_Emwm specified in _EB .
v .R in the if block or in the else-block i ®

.._:_ .n..

15 m.—.—.—m._.—mh. than —.:.:.HFN:V‘_ |

The following program checks whe
#include <stdio.h>
int main()

{
int a;
printf(”inter value of a”); Wi} R L
scanf(” %d"” ,&a);
if(a<0)
}

printf(“\n The number %d is positive.” a);
}

else

{

printf(“\n The number %d is negative.”,a);
}

return 0;

}
The following program compares two strings to check i&nﬂﬁ.g 5

#include <stdio.h>
#include <string.h>
int main()
{
char a[20], b[20];
printf(“\n Enter the first string:”);
scanf(“%s”, a); g
printf(“\n Enter the second string:");
scanf(“%s”, b);
if((stremp(a, b)==0))
{
printf(“\nStrings are the same”);
} il
else |
{
printf(“\nStrings are different”);
i

return 0;

}
The above program compares two strings to check
function is used for this purpose. It is declared E_&m

int stremp(const char *sl, const char *mm?

It compares the string pointed to by si to the
Integer greater than, equal to, or less than zerc
¢qual to, or less than the string _B_ﬁﬁﬁﬁ b)

Scanned by TapScanner

- - i h o T A &l "
= & Programming in ings a and b are .E:m_. the stremp functio, 4
_.Dwﬂ.mai m_u the two S i ﬁwm.ux are ﬁm_w.,.__.w".ﬂ:__. E_E
Therefore in the %ﬂﬂﬂuﬂ strings are the same; ©
it returns a Y,
return a 0. If 1t 1€
ments , within the other. Nesting :
if-else State . atements 0N€ SUng g i
Nested | - est if-€'5C G n need to be selected. sefy I

: ible
It is also possib . eparernit CO
sjtuations where one of several ﬁwaﬁm_mm statement 1S :
t of a nested 1-
The general forma

if ?a:&ma_._:
{

//statement(s);

i
else if(condition2)

{
//statement(s);

}

else if (conditionN) 7
{

//statement(s); |

}

else

.ﬁ_ _
//statement(s);

}

?mmgﬂn_mm_manmﬁ_nu_.,rm:..m_mm_mnnm_.. UE.__:mEmnme_:E_:T_:.rf_Fi:..n_mnm_mﬁama_m
mnua m_m 7 nczmm:ﬁ is encountered which evaluates to true, the statements associated with _E;
e e e o e e st il b s
the control gets transferred to the zmﬁ_ EMM_‘_M_._M& m;w-_u_ﬁr 18 n,xnnﬁ:na, or if the n?n.&_:nr is abs

N present immediately after the else-if ladder.

?nmu:_uﬁ.
numbers. "€ Program makes use of the nested

#include<stdio.h>
int main()

{

Eﬁn_

if-else statement to find the greatest 0

Int d, T__.ﬂ

di= m_, b= mu ﬁ”ucﬁ
if (a > b)

{

:?va
1

printf(“\nGreatest is:”, a);
}
else if(c > a)
{
printf(“\nGreatest is:”, c);
}
}
else if(b>c) //outermost if-else block
{
printf("\nGreatest is:”, b);

Pl

printf(“\nGreatest is:”, c);

}

return 0);
_".

The above program compares three integer quantities, and prints the greatest. The first if statement
compares the values of a and b. If a>b is true, program control gets transferred to the if-else statement
nested inside the if block, where b is compared to ¢. If b>c is also true, the value of a is printed; else the
value of ¢ and a are compared and if c>a is true, the value of ¢ is printed. After this the rest of the
if-else ladder is bypassed.

However, if the first condition a>b is false, the control directly gets transferred to the outermost
else-if block, where the value of b is compared with c (as a is not the greatest).

If b>c¢ is true the value of b is printed else the value of ¢ is printed. Note the nesting, the use of
braces, and the indentation. All this is required to maintain clarty.

Selection Statement

Switch-case Statement : A switch statement is used for multiple way selections that will branch
into different code segments based on the value of a variable or expression. This expression or variable
must be of integer data type.

Syntax :

switch (expression)
{
case valuel:
code segmentl;
break;
case value2:
code segment2;
break;

e — T . e ey

Scanned by TapScanner

printf(‘Friday”);

case 7 : i1 g

printf(“Saturday”);
break;
978 - gene ing E.am_.mz._ execution or read in as :mﬂ.. default: ’
) ﬂ ".”. WEH mﬁﬂﬂﬁmm‘_ﬁ-—u Hm m_ﬂﬁﬂnﬂﬂ_ﬁ NHH&. ﬂu_n..wﬁﬁ._”ﬂﬁm _.—.._H_ﬂ - T | .mua._”mﬁﬁ—bﬂmu.—nm ﬂw—ﬁ_—_ﬁm&v-
manuﬂ to be executed when the value of the expy n%sr _,_ \
g return 0; Cer T

ey nn...m of every case. If it were not so, the mxﬂnsﬂcn }
.m_wﬁ next case without even checking the case value. For gy,

and the value of the third case matches the val

t the end of the third case, all the cases after

resent a
E&MHM@H,HMM 3. If break is present only the required case is ma_uﬂ&
.mmmaw the control gets transferred to the next statement immediately after the cui s switch, which 1s: ity
nt. There is no break after default because after the default case the control will either ﬁ_u,, return 0;
i _.;:ﬂaﬁmﬂauﬁuﬂ immediately after switch. [t is also possible to embed compound statements inside mun
b %Eﬁu:ﬁ the day of the week. compound statements may contain control structures. Thus, it is a
J by embedding it inside a case.

All programs written using the switch-case statement can also
statement. However, it makes good programming sense to use the if s 1€
some action after evaluating some simple or complex condition which may involve
relational and logical expressions (eg, (if ((a! = 0)&&(b>5))). |

If you need to select among a large group of values, a switch stz ate
set of nested ifs. The switch differs from the if in that switch can e&ﬁﬁm 5
evaluate any type of Boolean expression.

The switch statement must be used when one needs to Eu%n
| The switch case statement is generally used in menu-based ,ﬂ...

switch-case statement is in data handling or file processing. %
_ functions: creating a file, adding records, deleting records,
|
|

B . -
T
I
L |
e
—_—

some selective records. The following program gives an &mm
used in data handling. = L

Example : A switch case statement used in data file proces:
| #include <stdio.h> _
| int main()
_ { //create file &set file pointer .
|

int choice;
printf(“\n Please select from the following opti on

A printf(“\n 1. Add a record at the end %ﬂ.&%
| _H.EE “\n2.Add a H.mnca m_” m_mwm 41

.L..uﬂ_..__l

T

printf(")bw_mmmm enter v& __H
scanf(“ %d” &choice);
switch(choice)

Scanned by TapScanner

L e :

o ..1....“"--
P
b T

S

ot a
ke T gt

| ing in C
80 # Programming Control Structures # 81

{ ho i The syntax of C while loop is as follows : -

case 1: nd of the i€ while (expression) _

d at the € |

JJcode to add recor _" |
break; p // execute statements B

aﬂ? o add record at the beginning ©- BiEdile w
v

The while loop executes as long as the given logical expression evaluates to true. When expression

Scanned by Tpaer

E...m.m? evaluates to false, the _::w stops. The expression is checked at the beginning of each iteration. The |
Ease dd record after a particular record execute statements inside the body of the while loop statement are not executed if the expression “
\Mgﬁmm. toa ﬁ‘_...E_Em—ﬂﬂm T..,.. ‘.m._ﬁmﬂ..____r___.._.n: __....”:.._mn._ﬂm the __u__"uﬁ1 It 1s necessary to _..._.ﬁ&mﬂﬁ the _.D_D._u condition inside the m§ _
break; body to avoid an indefinite loop. |
default: e The following flowchart illustrates the while loop in C :
. oice");
“ =
return (; Tost
es
} . False Exi 2
_ : po— xit while loo
The above example of switch-case generally involves nesting the switch-case construct inside Expression 5 P v
iteration construct like do-while. |
_
- Loop Body of while loop |
A Computer is used for performing many Repetitive types of tasks The Process of x%mm_mm_ﬂ “ |
m.inzu___:m tasks is known as looping .The Statements in the block may be Executed any number of o il AR . 2 F
fimes from Zero to Up to the Condition is True. The Loop .is that in which a task is _-c?....n_.._”ma until the mF?.. E wiile E:E. o B ﬁ,
condition is true or we can say in the loop will Executes all the statements are until the . iven conditi . :F, o E:a_::: VR b and o e S * :
1s not to be false. 2 tHion 2. On execution of the body, test condition is repetitively checked and if it is true the statemen i
block is executed . ! s : -
These are generally used f; ine the s : . ;| - i <4 |
oz Bxit € & lled Y or repeating the statements., In this There is Either Entry controlled loop . The niocess of cxetibicncr data D - - : e |
ontrolled Loop. We know that before Execution of State Conditions are Checked i 3. process ol execution of the statement block will be continued until the test condition &
Mwﬁmnunu E‘.m:n..« ﬁn:qﬁzmn_ Loops Which First Checks n::a:_.s:. knd i _......M: Controlled Mmm m_yﬂ ﬁri;”_.:__,w,.x false. :.E_,m?_.m you must always include a statement which alters the value of the ﬂ
. nm_.m. Condition for Ending Loop. Whether given Condition is False or not if 4 | - :w..n.. ﬁﬂﬁ__ﬂ_ condition so that it ultimately becomes false at some, point. Note that if the condition is never &
ondition For Execution then it is called e h_,q. . ¥ ,Hm, I'a Loop First Checs ::am_n_a and the condition never becomes false, then the computer will run into an infinite loop “
after the Execution of Statement then they are S:ma. Exi vt Loop and 1t a Loop Checks Condition which is never desirable. _
J are called as Exit Controlled [.oons . . . : : _
In the loop generally there are At bas _ Xit Controlled Loops. 4. The control is transferred out of the loop. _
L. Initialization >1€ Operations are performed - ® Example 1: The followi : S " ; |
4 3. Increment / decr s olfowing program uses while loop to print “Hello World” 10 times. m
2. Condition check / decrement(update) #include <stdio.h> _ m
Types of loop int main(void)
1. while loo _. 5
D AR
2 aﬂn_.ﬂE__m. __c.cﬁ 3. m“:. _Gﬁﬁ_ Int1 = _ﬁ .m..”..”.,,.....,.
i , > 1 * forss
1. while .Er:m loop execution */
il while(i < 11) u.
lie Loop is Known
) ds .“ _.......
.___wm:.__.w Dﬁﬁmﬂmvhm or M—.E.Dﬂm m._._m_.va AUD_BQG:.WQ m.\.u_uﬁ Tmnmﬂ e mn : R & 4 r
e then it will exeonte gy <pes oL CXCUION and thep vre oy o 1 While loop first we initiaiZ & printt{ Hello Jyornstl ||
varable. But in the while _Em W._WHE%E and thep L _,Hm .n:mnw the condition and if the nczm_:aﬂm i++; /* statement that change the value of condition */ | &
: : 1 e T 1 . alue 0
For Execution, this IS must Ewﬁ Em condition jg false thep j¢ ficrements or decrements the valué thal “.
¢ Oc:a_ﬁ.c: must be Eﬁ_ i never. Executes toe Statement S0 return 0; !

e ————

i
7%= r
2. L ld kel e

2. do-while Bs.
This is Also Called as Exit Controlled Lo

hefore the execution of the program but if
statements so for this purpose we use the do while
it increments En.qun of a variable anc the cond
Execute the stat time. i
y | . Syntax :
‘e ﬁ._ﬂ”,— _ dos
1 // body of do while loop
L statement 1;

c ity i=] and is less than 11, i.e., the condition (1 < 11) ig true, so i “MHEmE -

d and the value of i is incremented using expression i++, Ag there gre,, }
while(condition);

Scanned by TapScanner

ute inside the body of the while loop, this completes the first jiarare
m%nwuaw&. if it is still true then once again the body of the fou.
eats as long as the value of i is less than 11. When i reaches 11, he ju

somes out of the while loop.

i S

ving program uses while loop to calculate the sum of individual digitsy

If condition
Is true

is false

MERY L &)
In do while loop first the statements in the body are e t

A l & u._._:.. _”_ &

until the condition becomes false. As usual, if the body of cf

1 o
=

s | then braces ({}) can be omitted. Notice that unlike the while loo
i % 10; /* take out the last digit of a number */ after the condition. ,

d .nﬁ\s add the remainder to the sum */ | The do while loop differs significantly from the while
‘ the body are executed at least once even if the condition
IS checked first and if it true only then the statements in tt

| ri \Sur mn = %d" n, R #include <stdio.h>
i A int main ()

.ﬁ” n*- g
/* local variable definition */
inta = 10;

/* do loop execution */

v | il

o
R

1 of the sssher from right to left and then e {

€ variable sum is initialized to 0. ThiS B 7

=

- halized then these numbers will be added 10

itt! Most of the time you will use while loop instead cwnc
: ulﬁﬁﬂrnﬁ% while loop suits best. Consider the following probe em,

3 want to create a program to find the factorial of a number. As you probably kn Kno
valid for 0 and positive numbers. Here is one way you can approach this problem

1, a better approach would be to ask the user again to enter a number. You hay

= Pk E!E a positive number or 0. Once a positive number or 0 is e :.;.
S 3 ..w_p_... EE

Let’s see how we can _ it using while and do while loop.
!.Bﬂ the g_.n_um of a do-while loop :

F il e

_
|
hi
_

!& a negative number, so instead of displaying an error Emmﬁ%ﬁ_,,.]

how the program was able to print the seri _

6

8

10
12
14
16
18
20
In the above example, we have printed mu

1. First, we have initialized a variable ‘num’ !EE
2. Inaloop, we have a print function that will ¢
2. .
3. After each increment, the value of num will i
4. Initially, the value of num is 1. In a body of a loop, E
way: 2*num where num=1, then 2*1=2 hence the v
until the value of num becomes 10. %Eﬂgﬂ&-g
immediately after the loop will be executed. In this case

vnw.,

Difference between while and do°
while | .

Condition is checked first then statement(s) is
executed.

In ‘while’ loop the controlling condition appears at
the start of the _ccﬁ

code 1s mrmzm_.

It might occur statement(s) 1s executed zero times, |
[f condition is false.

No semicolon at the end of while.

while(condition)

If E.n..n is a single statement, brackets are not|
required.

Variable in condition is initialized before the
execution of loop.

Wwhile loop is entry controlled loop.

while(condition) {statement(s);}

3. for

.

In This loop all the basic

Scanned by TapScanner

o e ecuted only once. :
&.‘w ok ted. I the test expression is evaluated to false o

..H.muﬁ :) w&mnnn— "N
ession is Eﬁ_ﬁﬁ |

on until the test expression is false. When the test expression s false, Eo _

-_l._ fnedd 25

e aswww%amm_a: (when the test expression is evaluated to true and mm_..ﬁ_

........

Initilization Expression .

_
:
i

Expression

|
for Loop Body ._ 4

update Expression

}
Qutput :
12345678910
1. iis initialized to 1. ey
2. The test expression i < 11 is evalus din
executed. This will print the 1 ?Eﬁﬁm&gn
3. The update statement ++i is executed. Z@ﬁ%
is evaluated to true, and the body of for lo
screen.
4. Again, the update statement ++i is mmnnﬂﬁ@
process goes on EE_ i _unnaﬁnm :

P e e

f—.ﬂﬁ

& m:m:._...._m 2 : for _nn_... i
// Program to calculate the sum of first n natural nun w_,
// Positive integers 1,2,3...n are known as natural numl
#include <stdio.h>
int main()

{
int num, count, sum = 0;
printf(“Entera positive integer:");
scanf(“%d”, &num);
// for loop terminates when num is less than count
for(count = 1; count <= num; + +count) T

{ .

sum + = count;
}
printf(“Sum = %d", sum);
return (;
}
Output : Enter a positive integer :
10 Sum = 55 . ;
The value entered by the user is stored in the variable .._m..___.._,__..
count is initialized to 1 and the test expression is evaluated. St
less than or equal to 10) is true, the body of for loop is execute
Then, the update statement ++count is executed m:&%w ,
expression is evaluated. Since 2 is also less than 10, t
body of for loop is executed. Now, the sum will mﬁp&

This process goes on and the sum is calculated un L
When the count is 11, the test n#ﬁ_ﬁmﬂa: is nﬂ& ! .__g.r,. t
Then, the value of sum is printed on the s

Scanned by TapScanner

FJ_F.___._.

J = KoR function with *for’
d the %ﬂﬁ:ﬂﬁn many variations, that must be used wijg, the st
Hg _. ._- _ _

.w =" e T

between for and while loops, which are explaineq

.m—— _ﬂu are —E—.&—nﬂ to
. For example, the |
i %En inside the loop

L

while

condition; iteration) |while (condition)

{

statements; //body of loop
s

condition

% foop.

i checking,| Only
iteration statement is written atthe top of|checking is done at the top of the log _;
|

—-__.

nitialization and Ea_.__

m.rn “for’ loop used only when we
ly knew the number of iterations.

The ‘while’ loop used only E_Hﬂ
number of iteration are not 94 ___
known.

!
-

.”.4.._..._”_.,,_« condition is not put up in *for® loop,
~[then loo nfinite times.

If the condition is not put up in ‘whik'
loop, it provides compilation mnn_,. | .._

p the initialization once done

- ;qlalhui_

m:::m condition nwnn_cnmw
initialization is done each time __n
iterate.

In while loop if initialization is

Statement g
munn:ﬁm only after
D are €xecuted,

In ‘while’ loop, the iteration stafef®
can be written anywhere in the 100p op.

.E:ﬁ from mnu_ﬁ.m

it ion.
ere to anywhere within a functiof

Here label can be any plain te
above or below to goto m_ﬁﬁ:_onﬂ

Below are some examples on how to use goto ﬁuE
e Examples :

% Type I: In this case, we will see a situation ;

LA

3 M_J..._ ,

Lo

label: statement;

|]

need to write a program where we need to arﬂkmﬁ numl
accordingly using the goto statement. Below progra ns ho

// C program to check if a number is even or not usin; -.__.,_“
#include <stdio.h> :

// function to check even or not
void checkEvenOrNot (int num)
if (num % 2 == ()
//jump to even
goto even;
else
//jump to odd
goto odd;
even: =
printf(“%d is even”, num);
// return if even
return;
odd: A o v
printf(“%d is oﬁﬁﬂ num);
} %0
int main()
{

int num = 26;

Scanned by TapScanner

90 # Programming in C

checkEven OrNot(num);
return 0;
}
Output : : s
26iseven 11 see a situation similar 10 as %a%: ._,” mﬁmmxc__ MGWﬂm. Suppoge "
el i E_“ H_En__ prints numbers from 1 to 10 using the goto statemep; Bely,
need to write a progra

w to do this.

program explains ho bers from 1 id 10 using goto statement

// C program to print num
#include <stdio.h>
//function to print numbers from 1 to 10
void printNumbers()
{
intn = 1;
label:
printf(“%d “,n);
n++;
if(n<=10)
goto label;
!

// Driver program to test above function
int main()
{

printNumbers();

return 0);

h
Output ;

12345678910

Disadvantages of using goto statement

3 r__ﬂmzw discouraged as it makes the program logic very complex.
1ask of analyzing and verifying the correctness of prograims

avoided ys; :
¢ In modem Programming, ng break and continye statements,

] goto state ; : :

programming practice Ment 1s considered a harmful construct and a bad

% The goto statement
Can be re :

Statements, Placed in mos; Of C program with the use of break and contin¥®

HH_ .A...N_Um.u m.“—..—“_u___ HB..E
gram in C pro
sta mu.mg_z C s)
tement. 8 Can be pertectly written without the use of g0

* All Programmer gpq

- - - a -.-rl
- & rERg i B A o e L i R L -]) BEE L
e N s e T T R e e T Y T et et Ly <y pu..._ﬂ_.\.__..... e
e T R e : . Sainti it e
¥ ..l....-l.-.-.- W e ~ L n
T e)

: ...-...l......-. 4

..............
..................

Control Structures # ﬁu

case match is found, a block of statements 5

a block of a switch ._._mm a different name/number which is referred to as an Eﬂ.&.mmﬁ. H?mqm—w
provided by the user 1s compared with all the cases inside the switch block until the match is found.

ssociated with that particular case is executed. Each cas E

If a case match 1s NOT found, then the default
the switch block.

Syntax : A general syntax of how switch-case is implemented in a ‘C’ program is as follows :
switch(expression)

{

case value-1;

statement is executed, and the control goes out of

Block-1;

Break;
case value-2:

Block-2;

Break:;
case value-n:

Block-n;

Break;
default:

Block-1;

Break;
}

Statement-x;
% The expression can be integer expression or a character expression.

L]

% Value-1, 2, n are case labels which are used to identify each case individually. Remember that
case labels should not be same as it may create a problem while executing a program. Suppose
we have two cases with the same label as *!”. Then while executing the program, the case that
appears first will be executed even though you want the program to execute a second case.
This creates problems in the program and does not provide the desired output.

% case labels always end with a colon (:). Each of these cases 1s associated with a block.

% A block is nothing but multiple statements which are grouped for a particular case.

“ Whenever the switch is executed, the value of test-expression is compared with all the cases
which we have defined inside the switch. Suppose the test expression contains value 4. This
value is compared with all the cases until case whose label four 1s found in the program. As
Soon as a case 1s found the block of statements associated with that particular case is executed
and control goes out of the switch.

% The break keyword in each case indicates the end of a particular case. If we do not put the
break in each case then even though the specific case is executed, the switch in C will

continue to execute all the cases until the end is reached. This should not happen; hence we

always have to put break keyword in each case. Break will terminate the case once it is
¢xecuted and the control will fall out of the switch.

The default case is an optional one. Whenever the value of test-expression is not matched

with any of the cases inside the switch, then the default will be ¢xecuted. Otherwise, it is not

necessary to write default in the switch.

* Once the switch is executed the control will go to the

statement-x, and the execution of a
program will continue.

T
el

e

E T ST

Scan by TapScanner

TOA L e R T T T S
wehE T . - 1

e N e b Lo R
- et TR L RS o AT IS Ll
ELERES AR phna bah bk h Y

e
A et

i P B

| . .m_.mmr

Statement-X

ik g pro “._,.__.....b_.%_aﬁﬁ_..,.mnmm the use of switch :

........
e b T

- - N
T N

m hPmi:.nw noEn.:ﬁE. 3
statements associated with the

3. In this program, E:anﬁoi,
whose case-label is §. After e

program will be 8:553&
screen. iﬂp
Try changing the value of ..,.E.Egn. num ﬁﬁ_ oA

consider the following program which defaults:
#include <stdio.h>

int main()
{ g ilerey ul
int language = 10; -
switch (language)
{
case 1:
printf(“C#\n”);
break;
case 2:

printf("C\n");
break;

case 3:
printf(“C++\n");
break;

default:

printf(“Other programming language'\n”);

}
Output :
Other programming language
Break statement
The break statement is used inside loop or switch s e
statement inside a loop, compiler will abort the loop EE O] _h,._.. <
loop. >
In general the break statements we used in the mﬁﬁaﬁﬁ
based on the condition or not sure how many Ennm
using inside the nested loop, then the break stateme
statement after the inner loop of the program control ¢
Syntax :
_H.mmF

Scanned by TapScanner

94 # Programming in C

o Example : Break statement inside the do-while loop: o |
Consider the following example to tha tat et ' Forrap s _
use the break cmen while loop.

#include <stdio h>

= [S

int main ()

[
A 1

1
- -.w

int co = 0,]

L:

f
1

printf(‘loop %d\n",co);

e B

e

Scanned by TapScanner

e

There are two usages and the .E;..n: statement 1S n.....%_m_.:n_._ below if{co == 6)
& Inside a Loop : Ifthe break statement is using inside a loop along with the if statemen; thenf break;
the condition becomes true the loop is immediately terminated and the next statement afte else A
the loop starts executing by the program control. oo = co+1: ;
¢ Reak statement inside while loop \ q
¢ Consider the following example to use the break statement inside while loop. while(co < 10); ...
® Example : printf(“\n",co);
thinclude <stdio.h> *JJ_J_:H..,—._.F. r..__:m.. terminate at co = %d”, co); :
int main () return 0); i
{ : __m
int co = (; The output of the above code : ‘
F_E_mAﬁG = :.“__ Lo Tall ._*
{ __.:;._ |
ﬁizia_ﬁuﬁﬁ d\n”,co); loop 2
if(co == 6) I op 3 .
_uﬂm._mwﬂ __..,:.._—,._ 4 >
else L0 P S ..]
€0 =co +1; loop 6 _
} Che loop terminat at co = 6 |
Hlmzﬁ.%. ._._.___..—-_.._... ¥ N " . |
ﬂ.1 Ma /0); Inside a Switch Case
printt(" The loop terminal at co = %d”. co)- If Break < o ke _ . _
| return 0- a, co); reak Statement in C is using inside a switch case after each switch case then the break
v statement terminates a case after executing the case. -
o E ‘ insi . : |
i The output of the above code : _.”_m::__m : Break statement inside the switch case
: loop 0 #include <stdio.h>
% _ﬁvﬂ._...- 1 void _..._J.mm_u_: ;| “.._.J_r
hgﬁw ,__ A . £ = b AL = ..r.._ =.J
_Gﬂﬁ 3 char :ﬁf E | |
loop 4 printf(“Enter the option \"AY', \"'BY", \"C\" or \'D\"); .L:
! . Hgﬁ m u...,.“..n.__n..—.._“ i ..._.“._ﬁ_._“.a__.___ .mhﬁ.—ﬁ—. .‘”_u - .ﬂ..h._.__ 45
.__ loop 6 switch (opt) - .
._." Hie loop terminat atco = g .“ . " N & .:..q o
* case ‘B’: . i A
LIV e Y EX -
L
S . 1
. 2 '

CTLMEE A T fER e e e e T T e | T LT

o, .rf_m&_, or
on“A”,“B”,“C" or “D": H
or D, wrong input

- W

tion A, B, C,
- ..a.-ﬂ....u.... :

= L

“D” : A You have entered option A

F

value of a: 13
value of a: 14
value of a: 15

n_.,__——n.m-:-m

This statement 1s majorly used in the case of iters
name already suggests, makes sure that the code
executed. It is used in the same way as the break stz
execution of the loop or series of statements, but the
execution of the code. |

Below is the syntax for the continue statement,

Syntax :

continue;

As already mentioned, the continue statement is used in loof
would be like above. S used in loop

Flow Chart : We can understand it better through a flow chart, let’:

StartofLoop

Scanned by TapScanner

Code inside the loop after having|
the continue statement |
TR

Explanation : :
% As already known, any loop starts with a condition, an
One is the statement that has to be executed when a condi
false. a0 A

% When a condition is false, it is going to obviously exit the |
+ And when a condition is true, and have our continue nt, the iterator
the condition and the above process continues. |

=

¢ If the condition does not have that continue stateme;
® Example: _‘..__:n_m_:.w___ﬁﬂmMm_p_...__...m..“..m” bers f _ 0.
Code :

#include <stdio.h>
int main()
{
int i;
for(i=0;i<20;i+ +)

5 Ly
i el r
i B

Output

135791113151719 |

‘As per the observation, we can sc€ how the program works:
¢ We declared a variablei.

& We made for a loop by initializ

umber is less than 20. s e |

* Hna_ﬁrnn.in have another condition that if, modulo division of I with 2 is zero; that ig itwou

denote an even number, then we are using our ncE:Ew statement, which is, in turp, :.55.:m
the program back to them for a loop by incrementing its value by | ?
& Ifthe variable i will not be an even number, then the print statement is being executed, Which

in turn prints only odd numbers. |
For the above program, we have just modified we have just added a print statement below continge
statement.
Code :
#include <stdio.h>
int main()
{
int i;
for(i=0;i<20;i+ +)
{
- if(i%2==0)
_ {
continue;
printf(“This will not be executed”);

-
-

ing the value of I to 0 and incrementing it by gpe il

_._5.

& ._..u.:."...r". . e
= .-r_.“ wn.H... B b
- -

o Example : Let a movie tf
can we show the rema # |

Code :
#include <stdio.h>

int main ()

{

inta =0;

/* do loop execution */
do

{

if(a == 15)

{

a=a+d;
continue;

}

printf(“%d ”, a);
at++;

} while(a<30);
return 0;

}
Output :

012345678910111213 14 20 21 22 23 24 25 26 27 28 29
These are the steps on how we are writing this code.
We initialized the value of a to zero and the having do loop. e
Then we are having if a loop with the condition of variable a wﬂgmz
Then incrementing the value of a by 5 and then using continue to start t
Then we can get the numbers after 20 and then our while loop will ..:_4“w K
{m_zn::moz_._:.&n_.m. .,

LI R

Differentiate between break and continue statement ik
The major difference between break and continue ”ﬂmﬁﬁmﬁm in O_ﬁ, ge 18 th
the innermost enclosing loop or switch to be exited immediately. Wherea

causes the next iteration of the enclosing for, while, or do ~Eﬂ_£?:

while and do loops takes the control to the loop’s test-condition immediately, whereas in the
takes the control to the increment step of the loop. 2

The continue statement applies only to loops, not to switch. A conti
loop causes the next loop iteration. o - "l
Practically, break is used in switch, when we want to exit after a
loops, when it becomes desirable to leave the _cau.mwmcg nm_.,

You detect an error condition, or you reach the end of your dat:
The continue statement is used when we want to SKip 0n¢ 0

Scanned by TapScanner

100 # Programming in C

transfer the control to the next iteration.

Difference Between break and continue
Difference Betw

een brea

k and continue

e —

\ Break

while, do) statements.

A break causes the switch or loop statements (O
terminate the moment it is executed. Loop Of
switch ends abruptly when break encountered.

The break statement can be used both switch and
loop statements.

When a break statement is encountered, It
terminates the block and gets the control out of the
switch or loop.

A ._u_lmm__ﬁ causes the innermost enclosing loop or
switch to be exited immediately.

A break can appear in both switch and loop (for,

A continue mside a loop
|causes the next loop iteration.

Continue

—

1.|1|l|
A continue can appear only

statements.

In E:U. :cm .
B E—.—:m

A continue doesn't HE-E,_.::E the loop it |
the loop to go to the next is iteration, A m nmfg_
of the loop are executed even if Cont
encountered. The continue statement ;.
skip statements 1s the loop that

continue.

The continue statement can appear only in | |
You will get an error if this appears o m.ﬂﬁE_
statement. 5_5_

When a continue statement is encountered, j
the control to the next iteration of the v 1L el

_::w.

nested within SWitch

® Example : e Example:
#include <stdio.h> #include <stdio.h> _
int main() Int main()
{ {
int r + int i;
MDHA_Hch_ﬂmh++mv for (i=0; i<5; + +1)
.ﬂ |
if (i==3) if (i
if (i==3)
break;
MM_: i continue;
Wu ("7%d”, i); printf(“%d”, 1);
|
return 0; ;
: return 0;
Output : Outout R,
012 o o
e 0124

—

i
20 T Rl e

i T

F Introduction to Pointers
A Pointer in C language is a variable which holds the i
address of another variable .
4 of same data
Pointers are used to access memory and manipulate the address

Pointers are one of the most distinct and exciting fi |
catures of C language. It
flexibility to the language. guage. It provides power and

F Address in C

Whenever a Ei.,_s__m IS mi.:_._ma in C language, a memory location is assigned for it, in which it’s
value will be stored. We can easily check this memory address, using the & symbol. .
[f var is the name of the variable, then &var will give it’s address.
Let’s write a small program to see memory address of any variable that we define in our program.
#include<stdio.h>
void main()

.“

int var = 7;
printt(“Value of the variable var is: %d\n”, var):
printf(“Memory address of the variable var is: %x\n”, &var):
v
Value of the variable var is: 7
Memory address of the variable var is: bee7a00
-{:: must have also seen in the function scanf(), we mention &var to take user input for any
variable var.
scanf(“%d", &var):
This is used to store the user inputted value to the address of the vanable var.

F Concept of Pointers

| Whenever a variable is declared in a program, system allocates a location i.e an address to that
variable in the memory, to hold the assigned value. This location has its own address number, which

We just saw above.
Let us assume that system has allocated memory location 80F for a variable a.
inta =10

?ﬂ‘. e

-

-

Scanned by TapScanner

E— 5

Value

.

2 name of location

variable whose address we need. Pointer initializ:

g the variable name a or by using its addresg g

: N in -
e the valie [0 clthet Oy ™5 it’s address? Since the memory addresgeg are g .P
memor; esses are called Pointer variables. |

nﬁmmzm:m_.um . . . m._
o .,ﬂw_w”nwwﬁwﬁn to some other variable. The variables which are useq Moua mﬁ

mh . no-. variable is therefore nothing but a ﬁ:mzw which holds an address of SOme
Hﬁwﬁﬁhﬁﬁnﬂ&ﬁ of a pointer variable memory location.

has address of ..m../
[=s0F |
~ ptr<——pointer name
pointer mmO/

address of pointer

p _-. ‘Declaring a Pointer
E | Like variables, pointers have to be declared before they can be used in your program. Pointers cap
be named anything you want as long as they obey C’s naming rules. A pointer declaration has the
following form.
data_type * pointer variable name;
Here,
% data_type is the pointer’s base type of C’s variable types and indicates
1ta_ | nd indicates the type of the
ﬁnmcﬂ that the pointer points to. P 3
The asterisk (*: the same asterisk u
declares a pointer.
Let’s see some valid pointer declarations
int *ptr_thing; /* pointer to an integer */
E 2 ._—.H...__uﬁrmh— y ¥ . . 1
& py Briping \. Ptrl is a pointer to type integer and thing is an
; Integer variable */
double *ptr2; /* pointer to a double A
#, float *ptr3; /* pointer to a float */
: % ,.mru i /" pointer to a character *,
R . float *ptr, variable; /*ptris a

sed for multiplication) which is indirection operato

l'l-

LA ™
=
1]

To get the address of a aﬁnﬂ&.ﬂmﬂ%ﬁm nyh -

r

.r-.f- -
*
L1
Ao

Pointer = &variable; iR
A simple program for pointer illustration is given b
#include <stdio.h> T

int main() ¢

{
int a=10; //variable declaration
int *p; //pointer variable declaration
p=&a; eag vy
printf(“Address stored in a variable p wmuﬁxﬁﬁww%ﬁﬂ_ﬂ.._m._..q...
printf(“Value stored in a variable p is:%d\n”,*p); //accessi
return 0O; “. siand

v

Output : -
Address stored in a variable p is :60ff08 |
Value stored in a variable p is:10

Operator Meaning

* Serves 2 purpose . daaad
. Declaration of a pointer
2. Returns the value of the refe;

& Serves only 1 purpose a..
% Returns the address of a v

Advantages of using pointers V. ;pﬂ

(i) Pointers make the programs simple and reduce their length. e
(ii) Pointers are helpful in allocation and de-allocation of memory during
program. Thus, pointers are the instruments of dynamic memory ma

(iii) Pointers enhance the execution speed of a program,
(iv) Pointers are helpful in traversing through arrays and character ¢
arrays of characters terminated by the null character (\O%).

(v) Pointers also act as references to different types of objects :
functions.structures, etc. However, C language does not have th
C++. Therefore, in C we use pointer as a reference.

.
—

Lk
il

(vi) Pointers may be used to pass on arrays, Strings, Iunctions, as

function. , e
(vii) Passing on arrays by pointers saves lot of Em:ﬁqsﬂ AUS
of array instead of all the elements of an array, which
elements and thus taking lot of memory space.
(Viii) Pointers are used to construct different %Emm : ._”....._...__
(ix) Pointers are more efficient in handling Arrays anc
(x) Pointers allow references to function and th |
other functions. o

Scanned by TapScanner

Ll |
b
o
=%

=" . :

T T
£ -
.. .. .

Ketp ﬁazﬁw e 10 be freed explicitly. Otherwise, it would lead ¢

F.

Dot e . than normal variables. ;
o Ifs ititers are undated-with incorrect values, it might lead to memory corruption,

nember About Pointers In C

S i w&_qmaam the value whereas pointer variable stores the address of the Variahle

.9 ;n content of the C pointer always be a whole number i.e. address.

S @ Eﬁ#ﬁn pointer is initialized to null, i.¢. int *p = null. |
- Sget] & The value of null pointer is 0. 7
W. . 0, & symbol is used to get the address of the variable. |
%w.“_. | @ *symbol is used to get the value of the variable that the pointer is pointing to.
B & Ifa pointer in C is assigned to NULL, it means it is pointing to nothing.
I % Two pointers can be subtracted to know how many elements are available between thege two
EERE . pointers,

. ,m < But, Pointer addition, multiplication, division are not allowed.

R :_1.?, The size of any pointer is 2 byte (for 16 bit compiler).
B Pointer to Pointer -
kel A pointer to a pointer is a form of multiple indirection, or a chain of pointers. Normally, a pointer

* ccontains the address of a variable. When we define a pointer to a pointer, the first pointer contains the

- address of the second pointer, which points to the location that contains the actual value as shows
!] Jgﬁ.—_ﬁis
A Pointer

Pointer Variable

Value

R - Address ——> Address —»

= 5 - - 4 v, . .ﬁ.n......r.m
~ Whena target value s indirectly pointed to by a poi
 that the asterisk operator be applied twice, as s sho

o
iy o)
) |-.._.-.__ 2. 1B ._.-.J. -
Eh
B kel --

1 B L e, T

: 1nclude <stdio.h>
i .v‘ _..u.__-w.___..."......... ...ﬁ.m.h...._. r”.. ._.....__.._'I......HT__ - ...”. .u.......... = : o
gL I mair 5 E . *._.hr‘ ud

Ayclpl
5 s L
SN

/* take the m&&mmm.nm_ﬂﬁw.ﬁ_
pir = &var;

pptr = &ptr;
/* take the value using pptr */
printf(“Value of var = %d\n”, var); e
printf(“Value available at *ptr = 95d\n”. *ptr
printf(“Value available at **pptr
return 0;

/
When the above code 1s compiled and executed, it 0
Value of var = 3000

Value available at *ptr = 3000
Value available at **ppstr = 3000

.........
. &

| Types of a Pointer

Null Pointer |
We can create a null pointer by assigning null value during the pointer de
useful when you do not have any address assigned to the pointer. A null pointer :
0. -
Following program illustrates the use of a null pointer: |
#include <stdio.h>
int main()

{
int *p = NULL; //null pointer
printf(“The value inside variable p is:\n%Xx",p);
return 0;

h
Output:

The value inside variable p is: 0

Void Pointer o
In C programming, a void pointer is also called as a mnunnn.ha er.

; e e P ...”....."”.H.._“ .m.-.....r
data type. A void pointer is created by using the keyword ﬁum....._ ____.M.ﬂ 0
variable. AN

Following program illustrates the use of a void E_nﬁmn
#include <stdio.h> R
int main() S

{

-

void *p = NULL; //void pointer i
printf(“The size of pointer is:%d\r ,.J_..ﬂ..mﬁm._.._.@u_......_._m_.ﬁ“,.m..

..I-..4_.
. M)

e

return 0;

Scanned by TapScanner

| if it is not being initialized to anything, These
: :___;___Enﬁ 10 some unknown memory location Which m,
_Bn & crashing of the program. One should m_imﬁ E

g

mﬁ ‘monitored command dumped core
1: 95298 Segmentation fault timeout 10s main

|l. -.I.-|rl

, We access the array elements using its index, but this method can be eliminated by

s make it easy to access each array element.
nﬁ&o&v

_ 1 | E%T.u 2,34,5}; //array initialization
P ‘m&wﬁ //pointer declaration ﬂ
"y mxﬁm PIr points to the first element of the array*/

._._,..u...n.,

|

JE._R.__

H E_m array elements
0 the next m_mEmE you can also write p=p 1

5 vk 4_
Adding a particular number to a pointer will | o

h&&_ﬂ_ﬂ.ﬂ ﬁ__muﬂn.m_ﬂ-.uﬂ mﬁ—uﬁ_ﬂ_m_ﬂ P __m a Eﬁg CU 1:_ _.....ﬂ..l_..,. :
following addition operation, p+1 then it will ex K75

P+1

Since p currently points to the location 0 after he v
pointer will point to the memory location 1. ¥ o
v

] Pointers and Strings i

A string is an array of char objects, ending with a null character \ ﬁr
using pointers. Here is an example that explains this section

#include <stdio.h>

#include <string.h>

int main()

{
char str[]="Hello Guru99!";
char *p;
p=str;
printf(“First character is:%c\n",*p); |
p=p+1; S
printf(“Next character is:%c\n",*p);
printf(“Printing all the characters in a
p=str; //reset the pointer
for(int i=0:i<strlen(str);i++)
{

"y .5 . ..

printf(“%c\n”,*p);
pt++,
i

return 0;
!
Output
First character is:H -
Next character is:e ;al

Printing all the .nrﬁmnwwﬁ%n,@@_,_ . ,..,‘
E

Scanned by TapScanner

108 # Programmingin C
e
1
_
0
G
U
r
u
9
9

Functions Pointers
. . e L T ot B = il - oy 1 { ol » |y te 1 T =T .
Pointers give W—-ﬂm.zun_ Er_ﬂm——u—_:_ﬁm to “C” functions w hich we are limited tc H.WSJ..:: one ___:.w__.mm. E__..W_
pointer parameters, our functions now can process actual data rather than a copy of data.
In order to modify the actual values of variables, the calling statement passes addresse

S 10 pointer
parameters 1n a function.
Functions Pointers Example

For example, the next program swaps two values of two:
void swap (int *a, int *b):

int main()

{
int m = 25:
int n = 100:;

printf(*m is %d, n is %d\n”", m, n):
swap(&m, &n);

printf(*m is %d, n is %d\n" m. nj;
return 0;

}
void swap (int *a. int *b)
{
int temp;
temp = *a;
*a = *b;
*h= temp;
}
Output:
m 1s 25, n is 100

m is 100, n is 25

A function is a block of statements that

application 1n C language and in one of your program, you need to perform a same task more than

Once.

“A function is a block of code that performs a particular task ”

might need to write same line of code for more than once ina
program. This may lead to unnecessary repetition of code, bugs and even becomes boring for the
programmer. So, C language provides an approach in which you can declare and define a group of
statements once in the form of a function and it can be called and used whenever required.

There are many situations where we

In such case you have two options
(a) Use the same set of statements every time you want to perform the task
(b) Create a function to perform that task. and Just call it every time you need to perform that task.

:.,W:E:_:.::._::_m_ﬁ_mﬁ::_?ﬂn:nnm:am good programmer always uses functions while writing
codes in C.

Syntax of a function :
return_type function_name (argument list)

{
_

Set of statements - Block of code

|
{

return_type : Return type can be of any data type such as int. double. char. void, short etc. Don’t
worry you will understand these terms better once you go through the examples below.

function_name : It can be anything, however it is advised to have a meaningful name for the
functions so that it would be easy to understand the purpose of function just by seeing it’s name.

argument list : Argument list contains variables names along with their data types. These
arguments are kind of inputs for the function. For example - A function which is used to add two
integer variables, will be having two integer argument.

Block of code : Set of C statements, which will be executed whenever a call will be made to the
function

Let’s take an example : Suppose you want to create a function to add two integer variables.
Let’s split the problem so that it would be easy to understand :
Function will add the two numbers so it should have some meaningful name like sum, addition,
elc.
For example lets take the name addition for this function.
return_type addition(argument list);

..... 5 'Ffm !
. _Il”-1 : | .!....| 2y1..r . lvlhnl L S

Scanned by TapScanner

110 # Programming in C ans I need two integer varigy

. _.#,_.__,nu._ me _m as

: variables, W function signature w
This function addition adds tW0 ﬂ_nawmwun M?w function signature: o > Wouldioe
, , integer paramete +
input, lets ﬁwﬁ_ﬂn—n two 1 int num 2); 5 v
s oo fint puml, ’ ¢ tunction sh .
return_type addition(int r only. Hence ould retury 5,

: 0
The result of the sum of tWo integers W

integer -
integer value - I got my return type- It would be !

int addition(int num1, int num2);

— Types of Functions

(1) Predefined standard library
& Library functions in C language arc
in a common place called library. ,

: ion i ; specific operation.
¢ Each library function in C performs - . 1
<+ Wecan EMM__n use of these library functions to get the pre-defined output instead of writing oy

own code to get those outpuls.

& These library functions are created by the persons 1 |
All C standard library functions are declared in many header files which are saveq 4

—

functions :

nbuilt functions which are grouped together and Placeg

who designed and created C compilers

<
file name.h.) |)
& Actually, function declaration, definition for macros are given in all header files,
¢ We are including these header files in our C program using “#include<file name h>”

command to make use of the functions those are declared in the header files.

< When we include header files in our C program using “#include<filename.h>
C code of the header files are included in C program. Then, this C program is compiled by

compiler and executed.
| Such as puts(), gets(), printf(), scanf{) etc - These are the functions which already have a definition
in header files (.h files like stdio.h), so we just call them whenever there is a need to use them.

.ﬁv User Defined functions : A User-defined functions on the other hand. are those functions
which are defined ww.Em user at the time of writing program. These functions are made for code
reusability and for saving time and space.

Syntax :
MmEE type :mEm.rcmpE:n:.n: (type 1 arg 1, type2 arg2, typeS arg3)
eturn type function name argument list of the above syntax

- P H.—G.-f q._) "

Function definition
Function call
These three things are represented like
int function(int, int, int);
main()
{
Ha:w_n:n: (arg1, arg2, arg3):

int Ean:.g:%ﬁ ar ar
1.t
." 81,lype2 82,type3 arg3) /*function definition/*

n

"command. al|

; /*function amn_m_.m:::i
/* calling function*/

Functions # 111

[,ocal variable declaration;

Gtatement;
return value;

punction declaration

Function declaration is also known as function prototype. it inform the compiler about three thing,
name of the function, number and type of argument received by the function and the type of
d by the function. While declaring the name of the argument is optional and the function

terminated by the semicolon.

those arc
prototype always
Function definition

Function definition consists of the whole description and code of the function. It tells about what
function 18 doing what are its inputs and what are its out put It consists of two parts function header and

function body.

Syntax :
return type function(typel argl, type2 arg2, type3 arg3) /*function header*/

.ocal variable declaration;

Statement 1;
Statement 2:
return value

h
The return type denotes the type of the value that function will return and it is optional and if it is

omitted, it is assumed to be int by default. The body of the function is the compound statements or
block which consists of local variable declaration statement and optional return statement.

The local variable declared inside a function is local to that function only. It can't be used
anywhere in the program and its existence is only within this function. The arguments of the function
definition are known as formal arguments.

Function Call
When the function get called by the calling function then that is called, function call. The compiler

execute these functions when the semicolon is followed by the function name.

Example : function(argl, arg2, arg3);
The argument that are used inside the function call are called actual argument

Example : int S=sum(a. b): //actual arguments

Type of User-defined Functions
There can be 4 different types of user-defined functions, they are :
I. Function with no arguments and no return value
2. Function with no arguments and a return value
3. Function with arguments and no return value
4. Function with arguments and a return value

Scanned by Scanner

.._.. .¢ s takes 2 numbers as input from user, and EmEmw. whe

.? ﬂh.“.u declaration

//function call

//function definition

&w:m?ﬁm*n.. &i, &j);

ments and a return value

ﬂ umbers,

// function declaration

nm@eqﬂnsﬂ_n to make the function greatNum() return the number whichis

-4

...h.

}

Function with arguments and no return value

We are using the same function as example again and a
there can be many different ways.

int i, J, mﬁmﬂ_nmﬁzg g

E.EE_.mEm-.mu _r,_ e m that

scanf("%d%d", &, &j);

if (i > J)

{ ' ad
greaterNum = j

}

else

{
greatNum =

}
// returning the result

return greaterNum;

This time, we have modified the above example to ma

values as arguments, but it will not be returning anything.

#include<stdio.h>
void greatNum(int a, int b); /function declaration
int main()
{
int i, j;
printf(“Enter 2 numbers that you want to c
scanf(“%d%d”, &i, &j); _
greatNum({i, j); // function cal
return 0;
}
void greatNum(int x, inty) //function definit
{ R
if (x >y) T g
H e
printf(“The greater number is : %d”, x);
\ :
else R

{ il
printf(“the m&ﬁn:%?: od”, ¥)i

Scanned by TapScanner

ity of code

lli!g can be used in any program rather tha #
'i.

iti.ﬂuﬂ.ﬂn functions, as errors are easy (o be traced.

a%
i!lig are replaced by function calls.

Output :

Output : 220
e Example 2 : Creating a void user

/¢ Punction retuemn § -»_

¢ an integer value, the sy
of |

peturn sum;

)
int main()

{

el

int varl, var2; we
printf(“Enter number 1:),
scanf|“%d” &varl);
printf(“Enter number 2:);
scanf(“%d”, &var2);

/* Calling the function here, the
* is integer so we need an integer
* returned value of this function.

& | e
int res = addition(var1, var2);
printf (“Output: %d", res); -
return 0; E
}

Enter number 1: 100
Enter number 2: 120

#include <stdio.h>
/* function return uwﬁorilli

void introduction()

{
printf(“Hi\n");
printf(“My name is kavita \n")
printf(“How are you?™):
/* There is no return statement
* return type is void
'

}

int main()

{
/*calling function*/
introduction();

return 0;
}

Scanned by TapScanner

use/call one function inside mncﬂrﬂ,?a/.

. ._ _ﬂ > .ﬁﬂ.?ﬁﬁn—ﬂﬂm ieto
e “,O > also u:aﬁm Eﬁnnm because it may lead to infinite nesting

ﬂngw« careful while using nested functions,
function1()
[
// function1 body here
i //function1 body here
}

If function2 also has a called for functionl inside it,then in that case, it will lead to
nesting. They will keep calling each other and the program will never terminate.

| Not able to understand? Lets consider that inside the main() function, function] is calleq and i
execution starts, then inside functionl, we have a call for function2, so the control of program will g "

to the function2. But as function2 also has a call to function] in its body, it will call function 1, _.___E

4 will again call function2, and this will go on for infinite times, until you forcefully exit from pro
"Res execution. G|

* |
f Recursion : Recursion is a m__ﬁﬂm_ way of nesting functions, where a function calls itself jn

side it
| We must have certain conditions in the function to break out of the recursion. otherwise recursion wjj |
. ‘occur infinite times. |

function1() |

{ |
// function1 body |
function1();

// function1 body

e

dn EmEm_

@ : factorial of a number using Recursion
#Enmnamnﬂ&n&v

o int factorial(int x)
¢ void main()

// declaring the function

" 1

int a, b:

printf(“Enter a mumber.),
| scanf(“%d". &a):
Fie | b = factorial(a):
: printf(“%d”, b):
int facto

//ealling the function named factorial

{
mtr =i
if (x==1)
return 1;
m_mm
= x*factorial (x - 1);// recursion, wﬁﬁ. ,
H.mEE I; _.u
w et

similarly, there are many more applications of recursion in C la

Few points to Note regarding functions
(1) main() in C program is also a function.
(2) Each n ﬁEmEE must have at _nmﬁ one mEngF iEeF

(4) A function can call itself and it is __Eaﬁu as :ﬁanﬁm_ou; _q e

i sing Function . A:
m.m:n.q—ﬁm nﬂ c m “ _,.r_...ﬁn.r_..___F.. :

|. It provides modularity to your program’s structure,
2. It makes your code reusable. You just have to call the function by its
required.

3. In case of large programs with thousands of code lines, debugging and e
if you use functions.

It makes the program more readable and easy to understand. it
C functions are used to avoid rewriting same logic/code mmuE. E&
There 1s no limit in calling C functions to make use of same m_Enr
We can call functions any number of times in a program and WoE mmw
A large C program can easily be tracked when it is divided into f

The core concept of C functions are, re-usability, dividing a _..._mw: S
achieve the functionality and to improve understandability nm ,__EQ,_ g

Parameter : Each function has a name to identify it. After p
function, it can return a value. Some functions do not return any g. ._ .,
function to perform the task is sent as parameters.

Types of parameter: Parameters can be :
I.Actual parameters ol
2. Formal Parameters T

1. Actual parameters : Arguments which are mentioned in tf
4ctual argument. For example: T
func1(12, 23); e
here 12 and 23 are actual arguments.

Actual arguments can be constant, variables, e
° m._xm:..-_u_m “ £ b M rtﬂ“_‘

#include <stdio.h>
void addition (int x, int y)

el b L

.f:..._

©® N e

-._-..|th

.||-....I|.-. T e

Scanned by TapScanner

118 # Programming in C Functions # 119

2. If there is type mismatch between actyg| and formal

Scanned by TapScanner

..M e convert _=#,_. type of actual arguments to formal E.w::._n....ﬁ then the compiler will try to |
.Mw addition: value will be passed to the forma A fguments if it is legal, Otherwise, a garbage
addition = x+y; anges made in the f .
3. Changes made 1In the formal argument
printf(“%d”,addition); B do not affect the actual arguments. |
} Enmm of Function Calls 1 §
void main () | alled by thei : ol 1
Functions are ¢ It names; we all know that. t b : . !
t §uh - netion does Not have any arguments, then to call a fu ¢ e wia +_.,_.=m iutoriafox? WieliSit the
g Ciffon (4.9); M_._n:a:m with arguments, we can call a function in tw ﬁﬂnn yor cen direatly bacatgE S
s . nction: £ , 0 different w : |
Wnﬁrcc: &5l arguments, and these two ways are : 2ys, based on how we specify. the ._
: ; s _ 'all by Value N
According to the above C_program, there is a function named addition. In the main functiop a 1. m..m: w ol y
value 2 and 3 are passed to the function addition. This value 2 and 3 are :E.mn_..jm_ parameters. ,_,_wah 2. Call by Reterence 4
values are passed to the method addition, and the sum of two ::Ew_nﬁ _E:_ display on the Scregy call by Value |
Again, in the main program, new two integer values are passed to the addition method. Now the acty| il o5 BigatiuE B valiiaaanne |
parameters are 4 and 5. The summation of 4 and 5 will display on the screen. hm__zﬂ,m al Pﬁ_::c: wﬁ va ﬁJ,:Hn:w. we pass the values of the arguments which are stored or copied
: . . G , _ mal parameters of the fu + o]
2. Formal Parameters : Arguments which are mentioned in the definition of the function ; into the .w__ﬂ 5 ,v S s e nction. Hence, the original values are unchanged only the o
= . £ ol . ; 1S Called parameters inside the function changes. e
formal arguments. Formal arguments are very similar to local variables inside the function, Jygt | : 34
: _ , tke #include <stdio.h> j
local variables, formal arguments are destroyed when the function ends. | | 4
R e void calc(int x); ,
int factorial(int n) . ; |
{ int main|) |
// write logic here .H :
|) Int x = 10; s
: ale(x); _,
ﬂ Here n is the formal argument. ; ..p _ q _ ; ; (! !
// this will print the value of ‘x ,
// arguments pass by value s s i 18 96 i
s <sdishs H H_:_ f”: value of x in main is X3 ¢
, . . return 0; 3
int add (int a, int b)// Formal parameter. _,, ”.
{ ;
void calc(int x
return(a + b); A _ A ::,_:i : m
) // changing the value of x]
int main() =L :
(printf(“value of x in calc function is %d”, X); | | §
int x, y, z; . “ s , i 1 §
X =5 value of x in calc function is 20
y = m... : value of x in main is 10 . ¢
2 _ME | In this case, the actual variable x is not changed. This is because we are passing the m._;.w:EnE S_. |
= add(x,y); // Actual parameter Value, hence a copy of x is passed to the function, which is updated during function execution, E.ﬁ that 1 |
return 0; copied value in the function is destroyed when the function ends(goes out of scope). So the variable x B |
J side the main() function is never changed and hence, still :m.._nm a ﬁ_.ﬁ." of 10. | et N
// end of program But we can change this program to let the function modify the original x variable, by making the

function calc() return.a value, and storing that value in X.
#include <stdio.h>
int calc(int x):
int main()

Things to remember about actual and fo
1. Order, number, and type of the ac
arguments of the function.

rmal arguments, e
tual arguments in the function call must match with for |

1
n__..._....r I

e
et S L 5
et L]

B by g gl T

s S S Ll
AP LA) N e i T W S

q
4!

e

.ﬁ.__...J—._.._"“.” H.--.__'
o e

r.uln. = ._.-r.__.f P E—% ..Lu..-HlM.Iu..l.U.l.‘i .Hl

i

value of x 1s 20

Call by Reference .
In call by reference we pass..the address (reference) of a variable as argument to any functjg,

Why we pass the address of any variable as argument, then the function ?125: will have access {,
our variable, as it now knows where it is stored and hence can easily update its value.

In this case the formal parameters can be taken as a reference of a pointers, (don’t worry b
pointers, we will soon learn about them), in both the case they will change the values of the origina|

variable.
#include <stdio.h>
void calc(int *p); //function taking pointer as argument
int main()
{
int x = 10:
calc(&x); // passing address of ‘x’ as argument
printf(“value of x is %d”. x):
return(0);
}
void calc(int *p) //receiving the address in a reference pointer variable
{ .
changing the value directlv that is
stored at the address passed
J.u - .mﬁ...._- 10:
_ @.

UE between call E._ _:m_m_u and ou__,,_sm efer i
b Call By Value s ._”._ =73
M... \%m_:ﬁm a ?:nze.u.r we pass values _n_ _ .Em_.mm i =
*|variables to it. Such functions are known as “Cali |y A em. .
By Values . S
g tion s copied intg samemable.inIn this method,the adressof seua
MH__._HW variables of the called ?:aﬂ”ﬂ.mucza_nm “wmﬂmwﬁm ¢ Eo.. e ___F.
| i o, e hunges made 0 el With i et wing e
effect on ::_.. values of actual variables in the we would be able to dal
calling function. %
// C program to illustrate call by value| //C program Eﬁaﬂmﬁ%.ﬁﬁ._w H .
#include<stdio.h> #include <stdio.h> T
// Function Prototype // Function Prototype il
void swapx(int X, int y); void swapx(int*, int*);
// Main function // Main function e -
int main(} int main() .
: { otalin W
inta =10, b = 20; Eﬁmnmc‘m.uxmﬁm »¥e o4
// Pass by Values /| Pass reference
swapx(&a, &b); swapx(&a, &b);
printf(“a=%d b=%d\n", a, b) printf(“a=9%d b="%
return 0; return 0;
} \) ¥
/| Swap function that swaps // Function to swap two variables
// two values // by reterences ;
void swapx(int* x, int* y) void swapx(int* x, int*y)
{ { e
int t; &) =0
= X
X=X
¥y =15
printf(“x=%d\n", x, ¥);
} }
Q____.._u...a .
X =20 y =10 X
__[@a=10b=20 i

bt - o e ST

rrrrr

Scanned by TapScanner

122 # Programming in C

Thus actual values of a and b re
even after exchanging the values of X @

4. [In call by values we cannot alter the va
actual variables through function calls.

nd y.

technique.
6. |Execution time is more then call by value.

7. |Call by value 1s get supported by

| |and C#.

lues of

5. [Values of variables are passes by Simple

languages such as : C++.PHP. Visual Basic NET,

e ———

.nl._m_mm-.u.lm.m.m Thus actual values of a and b get nl__mm_m/,
ma

exchanging values of x and y. ed afle

In call by reference we can alter the
variables through function calls.

Pointer variables are necessary tg defip
store the address values of variables, ' 10

Execution time 1s less then call by valye
Call by reference 1s primarily get SUPPorteq |
y

Valygg of

_ Strings

JAVA.
— Sy

—r

In C programming, a string is a sequence of characters terminated with a null character \0. For

example:
char c[] = “c string”;

When the compiler encounters a sequence of characters enclosed in the double quotation Mmarks, i
]

appends a null character \0 at the end by default.

|« |

aﬁ__H_I:ﬁmei

—l

How to declare a string

Here’s how you can declare strings:
chars[5]; s[0]
sl0] s[1] s[2] s[3] s[4]

]

Here, we have declared a string of 5 characters.

How to initialize strings

You can initialize strings in a number of ways.
char c[] = “abed”:

char ¢[50] = “abed”:

charc[] = {‘a’,'b’, ‘¢’, ‘d’, 0’}

cl0] c[1] cl2] c[3] c[4]
a \ b ‘ C ‘_ d _ \0 _
Let’s take another example:

charc[5] = “abcde”:
Here, we are trying to assi

You can use the scanf() function to read a string,

s gn 6 characters (the last I = _— ving 3
characters. This is bad and you should never do s character is *\()) to a char array having

Read String from the user

The scanf() function reads the ge
aewline, tab etc.).
e Example 1: scanf() to read 3 string
tfinclude <stdio.h>

int main()

{

char name[20];
printf(“Enter name:)
scanf("%s", name);

W
¥

printf("Your name is %s,"”, name)
return 0;
i

Qutput :
Enter name : Dennis Ritchie

Your name 1s Dennis.
Even though Dennis Ritchie was entered in

How to read a line of text

You can use the fgets() function to read a line of strin

string.
e Example 2 : fgetsQ and puts()
#include <stdio.h>
int main()
_"
char name[30];
printf{(“Enter name:”);

quence of characters until

Functions # 123
it encounters whitespace (space,

AN NIE Dreest

¥
] -

| . the above program, only “Ritchie™ was stored in the
name string. It’s because there was a space after Dennis.

g. And, you can use puts() to display the

tgets(name, sizeof(name), stdin); // read string

printf(“Name:");
puts(name); // display string
return 0;
}
Output :

Enter name - Tom Hanks
Name : Tom Hanks

Here, we have used fgets() function to read a string from the user.
fgets(name, sizeof(name), stdlin); / read string

The sizeofq name) results to 30. Hence, we can take a maximum of 30 characters as input which is

the size of the name string.

To print the string, we have used puts(name);.
e Note : The gets() function can also be to take input from the user. However, it is removed

from the C standard.

s
............

Scanned by TapScanner

124 % Programming in C

. Hence, there might
It’s because gets() allows you to input any length of characters ght be 3 buffe,
overflow.

Passing Strings to Functions

Strings can be passed to a function in a
a function.

e Example 3 : Passing string to a Function
#include <stdio.h>
void displayString(char str[]);
int main()
{
char str[50];
printf(“Enter string:”);
fgets(str, sizeof(str), stdin);

similar way as arrays. Learn more about passing arrayg

displayString(str); // Passing string to a function,
return 0,

b

void displayString(char str[])

{
printf(“String Output:”);
puts(str);

}

String function - strien
Syntax :

size t strlen(const char *str)
size_t represents unsigned short
It returns the length of the string without including end character (terminating char “\0").
® Example of strlen :
#include <stdio.h>
#include <string.h>
int main()
{
charstrl[20] = “BeginnersBook”:

printf(“Length of string str1: %d”. strlen(str1))
return 0;

h
Output :
Length of string strl: 13

strien vs sizeof

§ stored in array, however sizeof returns the total allocated

size assigned to the array. ! i
= Y. SO.if T consider the above ¢xample again then the following statements

would return the below values.

(strl) returned value 13,

gtrlen
§1Z€0 f(strl)

Id retu 1Ze |
would return value 20 as the ATTay size is 20 (see the first statement in main function).

string function strnlen()

Syntax :
size_t strnlen(const char *str, size t maxlen)

size t represents unsigned short
it returns length of the string if it is

: less than the value specified for maxlen (maximum length)
otherwise it returns maxlen value,
e Example of strnlen:
#include <stdio.h>
#include <string.h>
int main(]

{

Scanned by TapScanner

charstrl[20] = “BeginnersBook”;
printf(“Length of string strl when maxlen is 30: %d”, strnlen(strl, 30)):
printf(“Length of string strl when maxlen is 10: %d”, strnlen(strl, 10));
return O;

f

QOutput :
Length of string str1 when maxlen is 30:13
Length of string strl when maxlen is 10:10

Have you noticed the output of second printf statement, even though the string length was 13 1t
returned only 10 because the maxlen was 10.

String function - strcmp

int strcmp(const char *str1, const char *str2)

It compares the two strings and returns an integer value. If both the strings are same (equal) then
this function would return 0 otherwise it may return a negative or positive value based on the
comparison,

If string1 < string2 OR stringl is a substring of string2 then it would result in a negative value.
[f string] > string2 then it would return positive value.

If string1 = = string2 then you would get O(zero) when you use this function for compare mﬂEWm
' Mﬁ.

® Example of strcmp:
#include <stdio.h> ¥
#include <string.h> L B
int main() 3
{ ¥
| char s1[20] = “BeginnersBook”;
char s2[20] = “BeginnersBook.COM™;
if (stremp(s1,52) ==0)
| {

126 # Programming in C

printf(“string1 and string2 are equal’);
}

else

.m, 7.
printf(“string1 and string2 are different);

}

return 0;

}
Output :
string1 and string2 are different

String function - strncmp()

int strnemp(const char *str1, const char *str2, size_t n]
size t is for unassigned short

It compares both the string till n characters or in other words it compares first n characters of both
the strings.

® Example of strncmp :
#include<stdio.h>
#include <string.h>
int main()
{
char s1[20] = “BeginnersBook”:
vchars2[20] = “BeginnersBook.COM”:

/* below it is comparing first 8 characters of s1 and s2*/
if (strncmp(s1,s2, 8) ==0)
{

printf(“string1 and string?2 are equal”);
/

else

{

printf(“string1 and string2 are different”);
¢ |
return 0;

}
Output :

string1 and string2 are equal
String function - strcat

char *strcat(char *str1, char *str2)

It concatenates two strings and returns the concatenated string

bt

o Example of strcat :
#include <stdio.h>
#include <string.h>
int main()

{
char s1[10] = “Hello”:
char s2[10] = “World”:
strcat(s1/s2);

printf(“Output string after Concatenation: 94g” s1): .

return 0; s

\ .

Qutput :

Scanned by TapScanner

Output string after concatenation: Hello World

gtring function - strncat

char *strncat(char *str1, char *str2, int n)

It concatenates n characters of str2 to string strl. A terminator char (*\0”) will always be appended
at the end of the concatenated string. pen

e Example of strncat

#include<stdio.h>

#include <string.h>

int main()

{
char s1[10] = “Hello”:
char s2[10] = “World”:
strncat(s1,s2, 3);
printf(“Concatenation using strncat: %s”, s1);
return 0;

h
Output :

Concatenation using strncat: HelloWor
String function - strcpy

char *strcpy(char *str1, char *str2) |
It copies the string str2 into string strl, including the end character (terminator char \0°). v B

® Example of strcpy . Wy W L_.r | ;
#include <stdio.h> | B
#include <string.h> b
int main() ¥
{ _m.m,.
char sl[30] = “string 1";

char s2[30] = “string 2 : I'm gonna copied into s17; i

printf(“String s1 is: %s”, s1):
return 0;

}
Output :

String s1 is: string 2: I'm gonna copied into s1i

String function - strncpy

char *strncpy(char *str1, char *str2, size_t n)
size_t is unassigned short and n is a number.
Casel : If length of str2 > n then it just copies first n characters of str2 into str].

Case2 : If length of str2 < n then it copies all the characters of str2 into
terminator chars(‘\0°) to accumulate the length of strl to make it n.

- ® Example of strncpy:
#include<stdio.h>
#include<string.h>
int main()
{
char first[30] = “string1";
char second[30] = “string2: I'm using strncpy now”;
F /* this function has copied first 12 chars of s2 into s1*/
strncpy(s1,s2,12);
printf(“Strings1 is: %s”, s1);
return 0;

strl and appendy Severy|

}
Output :

String s1 is: string2: I'm using st
String function - strchr
char *strchr(char *str, int ch)

e MMM.WMH H._MM mhﬁ mm_._. character ch _G.,_u: may be wondering that in above definition I have given
_ on ...ic:% I didn’t make any mistake it should be int only. The thing is when

ts converted into integer for better

o,
e

#include<stdio.h>
#include <string h>
int mainQ

B t

.n&mﬂ.mﬂﬁmﬂ__ﬁm.&” = “I'm an exa
i . : mple of ? 1 ",
ﬁgﬂu ﬁm__mmﬁa.. str ﬁ.—u .-._Hqum._Hu. ...Q.uh P Dction strchr ’

return 0;

1

Output :
f function strchr

string function - Strrchr

char *strrchr(char *str, int ch)
It is similar to the function strchr, the only diffe 1 _..-
now you would have understood why we haye nﬂ_ﬁ s
reverse only. i J,.um f
Now let’s take the same above example:

#include <stdio.h>

#include <string.h>

int main()

{
char mystr[30] = “I'm an example of function sf
printf (“%s”, strrchr(mystr, ‘f));
return 0;

}

QOutput :
function strchr

Scanned by TapScanner

String function - strstr()

char *strstr(char *str, char *srch_term)
It1s similar to strchr, except that it searches for string mnau...gH stead of
e Example of strstr: s .
#include <stdio.h>
#include <string.h>

int main()

{

.

char inputstr[70] = “String H_..Enznh Enfmﬁbﬁi
printf (“Output string is: %s”, strstr(inputstr, ‘Begi’));

w

return 0;
}
Output :
Output string is: BeginnersBookCOM
You can also use this function in place of strchr as you ¢
of search term string. :

) A e . 11 § o
Write a program in C to swap two numo J.Ju
#include<stdio.h>
void swap(int *,int *);
int main()

-

__. ,_Hmﬂ_umﬁm using function :\n");
ﬂ...“::u

= %d, n2 = %d \n\n",n1,n2);

%@ vap(int *p,int *q)

m__..,.a

l%ﬁu So p store the address of n1, so *p store the value of n1

xxﬂlmﬁm so q store the address of n2, so *q store the value of n2
9 int tmp;

| tmp = *p; // tmp store the value of n1

Ao *P="q; // *p store the value of *q that is value of n2

- *g=tmp; // *q store the value of tmp that is the value of ni

odl . :
oo
» 1ct &u : swap two numbers using function :

l-llllll.ll.l.ll.li.l.l.jl.l.l.l.l.lr.

—
—_— —

II'II

}

int Add(int a,int b)

{

printf(" .pU_,En_.mem
printf(“ 5.Modulus \n”);

return(a+b);

Substract(int a, int b)
{

return(a-b);

}

Multiply(int a, int b)

{

return(a*b);

}

float Divide(int a,int b)

{
return(a/b); .
} M
int Modulus(int a, int b)

{ 14
return(a%b);

}

main(int argc, char *argv(])
{

//show menu
displaymenu();

int yourchoice;

int a;

int b:

char confirm:

do

{

Scanned by TapScanner

printf(“Enter your choice(1-5):");
scanf(“%d:”,&yourchoice); =
printf(“Enter your two integer number.
scanf(“%d %d”,&a,&b); = =
printf(“\n"); AN
(vourchoice)
{

case 1 E.EE..mmmEﬁ %c

u.mmr E

:9%d” Modulus(a,b));
e) - default:printf(“invalid”);

“\nPress y or Y to continue:”);

F scanf(“%s”, &confirm);

b u-

while(confirm=="y’| |confirm=="Y");
system(“PAUSE");
return EXIT SUCCESS;

}

of a Number Using Recursion
#include<stdio.h>
long int multiplyNumbers(int nj;
int main()
{
int n;
printf(“Enter a positive integer: ”);
scanf(“%d”,&n):;
printf(“Factorial of %d = 944" .
i %d = 9%]d”, n, multiplyNumbers(n));
W
.Mauw.._mmﬁ.ﬁamﬁqz:ﬁgmﬁﬁﬁ n)
if (n>=1)
Tetur n*multiplyNumbers(p-1)-
o | (n-1);

progrd

Program to find reverse of a number using recursion

e T

am to find sum of digits using recyrein..
- i
* (C program to calculate sum m.m_mmmﬂm igis b., nr
*/ R T
#include <stdio.h> hy
/* Function declaration */ Tore .
int sumOfDigits(int num); |
int main() v
{

int num, sum,; |
printf(“Enter any number to find sum of digite. »

182):
scanf(“%d”, &num);)
sum = sumOfDigits(num);
printf(“Sum of digits of 9%d = 94~
return 0;

}
o
* Recursive function to find sum of digits of
* J
int sumOfDigits(int num)
{

// Base condition

if(num == 0)

return 0;

return ((num % 10) + sumOfDigits(num / 10));

, lum, sum);

a number

b
Output:

Enter any number to find sum of digits: 1234
Sum of digits of 1234 = 10

[- P
s, L

-L- y WL e W .. I

C program to find reverse of any number using recursion

#.__. -
#include <stdio.h> _
#include <math.h>

/* Fuction declaration */
mE reverse(int num);

Int main()

{

int num, rev:

Scanned by TapScanner

134 # Programming in C

/* Input number from user */
printf(“Enter any number: ");
scanf(“%d”, &num);
/* Call the function to reverse number */
rev = reverse(num);

printf(“Reverse of %d = %d”, num, revj;
return 0;

}

\l. *

* Recursive function to find reverse of any number
i
int reverse(int num)

{

// Find total digits in num
int digit = (int) log10(num);
// Base condition
if(num == Q)
return 0;

return ((num%?10 * pow(10, digit)) + reverse(num/10));

same type- An array is used to store a collection of
s

declare one array variable such as
| represent individual variables. A specific element in an array

and the highest address to the last element.

Arrays a kind of data structure that can store a

a collection of variables of the same type.

[nstead of declaring individual variables, such as number0), numberl. ... and number99, you
numbers and use numbers[0], =:E_ummﬁ_r mra ==E§Hmwﬂ8
: 1s accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the! element

First Element Last Element

Numbers[0] | Numbers[1] Numbers[2] | Numbers[3]

FOmn_m_._:mﬁ:.mﬁ

ele

To declare an array in C, a programmer specifies the type of the elements and the number of
ments required by an array as follows :

datatype arrayName [arraySize |;

This is called a single-dimensional array. The arraySize must be an integer constant greater than

2€10 and type can be any valid C data type. For example, to declare a 10-etement array called balance
_ of type double, use this statement :

L

double balance[10]:

Here balance is a variable array which is sufficient to hold up to 10 double numbers.

Initializing Arrays

dec]

You can initialize an array in C either one by one or using a single statement as follows :

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};
The number of values between braces { | cannot be larger than the number of elements that we
are for the array between square brackets []. L a s
If you omit the size of the array, an array just big enough to hold the initialization is created.
ﬂrmam?:m, if you write :

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

—
3

Scanned by TapScanner

-

e amay with a value of S0.0. All array

§io ot __ i the base index and the last index of an
i EE n 1al Hﬁﬁmmnﬁzcu of the array

drray ﬂ._,-:. _....n
we _ﬂnm_n_.._ww&

a4l |0’ | 50.0

0 E_l {19, 10, 8,17, 9};
@Eﬂuas initialize an array like this.

Fam)t . gﬂ.ﬁwzﬁl *.HW.HEHN Hﬂ_ m.ﬂ.

ﬁq—ﬁ ‘we haven’t specified the size. However, the compiler knows its size is § gz e are

1 ini ing it with 5 elements.

i * mark[0] mark[1] mark[2] mark[3] mark[4]

g 19 10 8 17 9

K Here,

M mark[0] is equal to 19
%. mark([l] is equal to 10
b mark(2] is equal to 8
mark(3] is equal to 17

-mark[4] is equal to 9

mﬁﬁwﬁm mﬁmﬁmﬁmﬁmﬁm_ {list of values};
i* mmummumm mme.q examples */
E_”Emnwmh&u Eﬂ.,m.ﬂ 56,77 }; /| integer arrav initialization
mamamammh& =1{23.4.6.8.55}; // float array initialization
Eﬂ 87, mm Hq mm): // ncEEHm time error

| ._._.__H_u_.

‘m.w RS adsehntin it 1.

._

E@mae {2,3,4); // Compile
___@_,,ﬁ m?%.w % mpile time array initialization

....F....___. ..__.-‘

e e i revious example, F -

printf(“d\t”, arr[i]);

}
2.3 %

—n Runtime Array Initialization

An array can also be initialized at runtime using sc
E:m:m_:w large arrays, or to initialize arrays with Eﬂ.
#include<stdio.h>

void main()

{
int arr[4];
int 1, 1;
printf(“Enter array element”);
for (i=0;1<4;i++)
{

Scanned by TapScanner

scanf("%d", & arr [i];) // Run time array initialization
h
for(i=0;i<4;i+4)
.ﬂ T
printf (“%d\n”, arr[i]);

1

— Accessing Array Elements

An element is accessed by indexing the array name. This is &H@ .Em -
within square brackets after the name of the array. For nHmEﬁ_m - -

double salary = balance[9];
The above statement will take the 10th element from the array

1 st

variable. The following example Shows how to use all the a.u.%
declaration, assignment, and accessing arrays -

#include<stdio.h> RE S 3! &
int main () i
.ﬁu =1
int n[10]; /* n is an array of 10 integers */
int i; | .
/* initialize elements of array n to c &/ o L
for (i =0;i< 10;i++)
{

T ...h.p.......:_r..

s i =
n the above code is compiled and executed, it produces the following result -
Element[0] = 100
Element[l] = 101
Element[2] = 102
Element[3] = 103
Element[4] = 104

Element[5] = 105

Element[6] = 106
Element[7] = 107

Element[8] = 103

Element[9] = 109

Another example
_. _.ﬂ mﬁﬂhﬁuﬂﬂ.&nﬁn& an array mark as above. The first element is mark[0]. the second element is
‘ g mark[0] mark{1] mark[z] mark[3] mark([4]

| |

Few keynotes :
| # m...”whnu\wign 0 as the mmﬁ index, not 1. In this example, mark[0] is the first element.
% EﬂMﬂn of an array is n, to access the last element, the n-1 index is used. In this example,

4 21244 Ppose the siarting address of mark[0] is 2120d. Then, the address of the mark[1] will be
Stmilarly. the address of mark{2] will be 2128d and so on,
This is because the size of 2 float is 4 bytes.

‘ i Input and Output Array Elements

Eﬁufﬁnﬂ.ﬁﬁwﬁnmﬁ:aﬁgﬁamﬁm it
// take input and store it in the 3rd element

In an array element.

scanf(“%d”, &mark(2]),
// take input and store it in the ith eler,
el t
w) scanf("%d”, &mark{i-1)), &
TR Here's how can print an indivi
| 3 / print the hgewﬁmsnﬁ_ element of an array,

// print the third element of the 4y
printf(“%d”, mark([2]); R

// print ith element of the array
printf(“%d”, mark[i-1]);
e Example 1: Array Input/Output .. _
// Program to take 5 values from the Eﬁu and .ﬂaﬂﬁ o
// Print the elements stored in the array >T0T€ them In an arra
#include <stdio.h> »
int main() v
{
int values|5];
printf(“Enter 5 integers:”);
/| taking input and storing it in an array
for(inti = 0;1 < 5; ++i)
{
scanf(“%d”, &valuesli]);
!
printf(“Displaying integers:”);
// printing elements of an array
for(inti = 0;1 < 5; ++i)
f .
printf(“%d\n”, values[i]);
!

return 0;
f
Output :
Enter 5 integers: 1
-3
34
0
3
Displaying integers: 1
-3
34
0
Here, we have used a for loop to EWH 51 1p) ,..a.ﬂ..ﬁ..,."...,h. , ety
another for loop, these elements are displayed on the screen.
® Example 2: Calculate Average
// Program to find the average of n numDbers Ustig &«
#include <stdio.h> : gl._.

i

Scanned by TapScanner

int marks([10], i, n, sum = 0, average
printf(“Enter number of elements: ");
scanf(“%d", &n);
for(i=0; i<n; ++i)
{
printf(“Enter number2d: ".i+1);
scanf(“%d", &marks[i]); |
// adding integers entered by the user to the sum variable
sum + = marks|i]; |
}
average = sum/n;
printf(“Average = %d", average);
return 0;
}
Output :
Enter n: 5
Enter number 1 : 45
Enter number 2 : 35
Enter number 3 : 38
Enter number 4 : 31
Enter number 5 : 49
Average = 39
Here, we have computed the average of n numbers entered by the user.
Example where arrays are used,
< to store list of Employee or Student names,
% to store marks of students,

% to store list of numbers or characters etc.

Types of Array

1. Single Dimensional Array
2. Two Dimensional Array
3. Three (Multi) Dimensional array

(1) Single Dimensional Array

A dimensional is used representing the elements of
int a[5];
~ The [] is used for dimensional or the sub
elements of the array. For Accessin
like this

the array for example.
g the Element from the array we ca

a[3] = 100;
This will set the value of 4th element of array,

.......

Bt of the array that is generally used for declaring the
n use the Subscript of the Array

k4

% R TSﬂ”-.h“”.".n..: .|.?..._.._.”.1L........u. TR
i e T
= A ._rsq | o, K
HhER N | R X
. “ -1 1] : -

go there is only the single bracket then it called the Single Dirrer
This is also called as the Single Dimensjonal Amay. s
[nitialize array at the time nq..—na_u..nu_ﬁ-. “Oﬂn.ém&aﬁ:__ﬂﬁ.w .
itialize it at the time of declaration. You can use this svatax ta
initialization.
int a[5] = {10, 20, 30, 40, 50}:
a[0] is initialized with 10, a[l] is initialized with 20 and so on.
[nitialize all a_mEm.:m of an array with 0 (zero): C program Eﬁagn
jeclared variables. Same is true for the elements of an array. When we declare
elements get :::.m_,ﬂmﬁ_. with mmawmmn value. If you don’t want to get all eleme
garbage, you can initialize them with value 0 (zero). You can do this with e holioi
int a[5] = {0}; .
with the following syntax, a[0] to a[5] all are initialized with value 0 (zero).
Important Point: You can initialize an array with 0 (zero) only.
If you want to initialize elements with value 10, this syntax will not work.
int a[5] = {10}; //This will not initialize all statements with 10

-u.. o

also possible to define the size of an array by initializing elements of the array. mw..n_... Can us:
- o .
for this, S

int a[] = {10, 20, 30, 40, 50}; '
Remember: if you are not defining size inside [] brackets, you must initiali
define array’s sizc). - ‘ pr
If you will not define size of an array inside [] brackets, and you are mwmw:
while declaring. Compiler will show an error “size of array is unknown or zero™ a
compile.
int al|; /This will cause an error. L
Initialize array elements individually : Array is a group of variables, each varia
clement of the array. You can initialize all elements separately as you
following syntax.

int a[5];

al0] = 10:
all] = 20:
al2] = 30:
al3] = 40:
al4] = 50:

(2) Two Dimensional Array or the Matrix e
The Two Dimensional array is used for representing the ele Q

'OWS and columns and these are used for representing the Matrix A Two im
WO subscrpts for declaring the elements of the Array. :
Like this
int a [3] [3];

w,asma This is the Example of the Two Dimensional Array in this fir

T

b

Bl Wit

: ve lotal NUIoct L

Sand the Second Elements Represents the Total R N.Mf_. Y N
» LN

¥ B
ot

=

rre

Initialize to define the size of an array : Till now, we declare an array with size.

.

e

Scanned by TapScanner

=

the Numbers of ROWs * Number of Columns in The Array i the

=

a ﬁ a_ | a E._IE a (0] [2] a [0] [3]
afiol a[mi afl@ a3
a2 a1y a@@ a2l

An array can also be declared and initialized together. For example,
R int arr{] [3] = { {0, 0, 0}, {1, 1, 1}};

v !luﬁm:ﬂ_u:ﬂ%n any row value to our array in the above example. It means we
,‘.. ¥ o N taliz any number of rows. But, we must always specify number of columns, else jt
" vill give a compile time error. Here, a 2*3 multi-dimensional matrix is created.
Runtime initialization of a two dimensional :
#include<stdio.h>
void main()
{

int arr [3] [4];
int i, j, k;
printf (“Enter array element”);
for(i=0;i<3;i++)
' {
for(i=0;i <4;i++)
; {
wﬁsm..*u.. &arrl[i] [i]);
}

for(i=0;i<3;i++)
{
for(i=0;j<4;i++)
{
print(*9%d”, arr(i] [i]);

}

EL ¥

:.:.._:.:Em:-_n:u_ or the Three Dy o |
The Multidimensional Array are ygeq e

@

Three dimensional ‘}:.um 15 used wheii ‘Wg n.mnw
Elements for Declaring the Aray Elements we can e P
int a[3] [3] [3]: o ..wr

[n this first 3 represents the total number of Tables kO ”.u..r.
rows 10 the each table and the third 3 represents ?E h
makes the 3 Tables having the three rows and the three o ‘umber
The Main and very important thing about the -
Contiguous 1n the memory of the Computer.

peclaration of Multidimensional Array: A multid

W~ ——
R

following syntax : —
datatype array_name{d1] [d2] [d3] [da) = s

Where each d is a dimension, and dn is the size of final dime at 8

e Examples: P

1. int table [5] [5] [20];
2. float arr [5] [6] [5] [6] [5];
In Example 1 :
< int designates the array type integer.
« table is the name of our 3D array.
« Our array can hold 500 integer-type elements. This
value of each dimension. In this case: Al
5%5%20 = 500. %
In Example 2 :

< Array arr 1s a five-dimensional array. -
< It can hold 4500 floating-point elements (5x6x5x6x5 = 4500).
Can you see the power of declaring an array over variables? When it o

values in C programming, we would need to declare several variables. By
thousands of values.

® Note : For the sake of simplicity, this tutorial wzﬁ-
-

.- rll

e
e

logic of how the 3D array works then you can |

F Explanation of a 30 Array

Let’s take a closer look at a 3D array. A 3D array is esse ...)
4rray or collection of 2D arrays, and a 2D array is an amray of 1D
It may sound a bit confusing, but don’t worry. As you prac
4ITays, you start to grasp the logic. R
The diagram below may help you understand : -

Scanned by TapScanner

o
144 # Programmingin C
_ i |_
(5T | R Mﬂ il
21 22 __ 23 1" 2-D Array
i T 12 | 13 |——0"2-D Array
s [16
17 18 19
3D Array Conceptual View
Tllil 0™ 2:p Array > 1% 2-D Array

"T - 27 2-D Array — .||||..j

ﬁ:ﬁ,_m_:m?i._ﬂ._m_:la__:.:N__mm_mimimimm__mimm 29[31]32 mm__ﬁww@.mmg

1000 1002 1004 1006 1008 1010 1012 1014 1016 1018 1020 1022 1024 1026 1028 1030 1032 1034 1036 1038 1040 1044 1046 1048 1050 1052 1054
3D array memory map S W

- :::.u_..w_:n a 3D Array : Like any other variable or array, a 3D array can be initi:
”:ncm_gm:m:c:, By default, in C, an uninitialized 3D array contains “garbage™
ended use. Let’s see a complete example on how to initialize a 3D array:

Declaration and Initialization 3D Array
#include<stdio.h>
#include<conio.h>
void main()

{

int i, j, k:

int arr[3] [3] [3]
{

Il

i
111, 12 13}
{14, 15, 16},
{17, 18, 19}
k
1
{21, 22, 23},
124, 25, 26},
{27, 28, 29}
k
{
{31, 32,33
{34, 35, 36},
{37, 38, 39}
!

clrscr

o ———]

alized at the time
values, not valid for the

b

printf(":::3D Array m_E:mEmﬁ,a,,:J.
for(i=0; 1<3; i++) ;
{
for(j=0; j<3;)+ +)
{
for(k=0;k<3;k++)
{
printf(“%d\t”, arr [1] [j] [k]):
__
printf(“\n");
i
printf(*\n”);

etch();

534D Mrwray Elementss::

iz
1%
]

In the code above we have declared a multidimensional integer array named “arr” which can hold
3x3x3 (or 27) elements.

Advantages of Array

[t is better and convenient way of storing the data of same datatype with same size.
It is used to represent multiple data items of same type by using only single name.
[t allows us to store known number of elements in it.

It allocates memory in contiguous memory locations for its elements. It does not allocate any

extra space/ memory for its elements. Hence there is no memory overflow or shortage of

memory 1n arrays.

[terating the arrays using their 1
e1C.,

It allows to store the elements 1 s
[t can be used to implement other data Structures like li
etc.

2D arrays are used to represent matrices

ndex is faster compared to any other methods like linked list

n any dimensional array - SUpports E:E&Enuﬂaua array.
nked lists, stacks, queues, trees, graphs

Scanned by TapScanner

i

d oy
_m i
il |

.
e o ..F..._-..
r -

- AN 1 L
T e e R St -

& Wemust know in advance that how many elements are (0 be stored in array

¢ Itallows ustoenteronly fixed number of elements into it. We cannot alter the sjze of the

once array is declared. Hence if we need to insert more number of records than declape s Ty
it is not possible. We should know array size at the compile time itself. fed the,

& Since array is of fixed size, if we allocate more memory than requirement thep the m
space will be wasted. And if we allocate less memory than requirement, thep will CMoy
problem. “Teate

The elements of array are stored in consecutive memory locations. So insertions ang dele;
are very difficult and time consuming. Clion

< Inserting and deleting the records from the array would be costly since we adq /

d
elements from the array. we need to manage memory space too. Clete the
® It does not verify the indexes while compiling the array. In case there is any indexes po;
which is more than the dimension specified, then we will get run time errorg rq Ewe_ué
identifying them at compile time. [than
Important Points about ArraysinC

< Anarray is a collection of variables of same data types.
@ All elements of array are stored in the contiguous memory locations.
¢ The size of array must be a constant integral value.

F&ﬁnﬁ: elements in an array can be accessed by the name of the array and an integey
enclosed in square bracket called subscript/index variable like employee Salary [5]. 3

<
% Armay is a random access data structure, you can access any element of array in just ope
<°

statement.
The first element in an array is at index 0, whereas the last element is at index (size_of array

-1).
—l Passing Individual Array Elements

Passing array elements toa function is similar to passing variables to a function,
@ Example 1: Passing an array
#include <stdio.h>
MEE display(int age1, int age2)
printf(“%d\n”, age1):;
£ A printf(“%d\n”, age2):
int main()
{
int ageArray([] = {2, 8, 4, 12}
e o //-Passing second and third elem

ents to display()

display(ageArray(1], ageArray(2]);
return 0; .

Output :
B

4

@ gxample 2: Passing arrays tc
// Program to calculate the sum of arr
#include <stdio.h>

float calculate Sum(float age[]):
int main()

{

float result, age[] = {23.4, 55, 22.6, 3, S.u.un? .
/| age array is passed to calculate Sum() LS
result = calculateSum(age); |

printf(“Result = %.2f", result);

Scanned by TapScanner

return 0; odiie
}
float calculateSum(float age[))
{

float sum = 0.0;

for (inti=0;i < 6; ++i)
{

sum + = age[il;

}

return sum;
i

Output :

Result = 162. 50

To pass an entire array to a function, only the name of the arra .. s pa
result = calculate Sum(age);

However, notice the use of [] in the function definition.

float calculate Sum(float age[])

“. Ll
This informs the compiler that you are passing a one-dime;
Passing Multidimensional Arrays to a Function : 10 ps
only the name of the array is passed to the function(s
® Example 3 : Passing two-dimension
#include <stdio.h> N ¥
void displayNumbers(int num{2]{2li

int main() |
A =

int num(2][2]; e

o

. .. ﬂn,,ﬁﬂ&.uhu.._.é

RS
B

- for(intj = __a&“iu

PR i o », gnuml[i][j]);
SALESE S i gt E%Em?ﬂnﬂﬁﬂ

void displayNumbers(int num|2](2])
A printf(“Displaying:\n”);
for (inti=0;i < 2; ++i)
" for (intj = 0;<2:+ +)
: printf(“%d\n”, num(i] [j]);

u -EE nﬂ.n% to ?.nneu i n programming with example : Just like variables, array can also

to a function as an argument. We are discussing m how to pass the array to a function using
n&?ﬁﬁ%&n& call by reference methods.

tion call, the actual parameter is copied to the formal parameters.
#include <stdio.h>

void disp(charch)

~ Passing array to function using call by value method : As we already know in this type of

int main()

(ol el

ﬁ—uﬁ—a EH..__.: .H.,_m. _—u-_ .n- .&_u .Q- }_W_ _. y
for (int x=0; Xx<10; x+ +) g
{
/* I'm passing each element one 51
disp (arr[x]); At

} sodith
return 0,

}

ﬁw:nﬂ:ﬂ" N
abcdefghij

passing array to function using call by reference : Whe
calling @ function then this 1s called function call by refere

argument, the function declaration should have a pointer as a
#include <stdio.h>

void disp(int *num)
{

printf(“%d ",
h
int main()

{
int arr[] = {1, 2, 3, 4,5,6,7,8,9,0};

for (int i=0; i<10; i+ +)

*numyj;

{
/* Passing addresses of array elements®/ 4
disp (&arr[i]);
} %
return 0,)
}
Output :

1234567890

Pass an entire array to a function as an argument : Fﬁo
address of each array element one by one using a 1ol1.. in (

array to a function like this: 1

® Note : The array name itself is the addre

array name is arr then you can say that

#include <stdio.h>

void myfuncn(int *var1, int varz)
{ LT

* the array and the qE.m _,_n 2 §

Scanned by TapScanner

that it points to

') . i 50
* loon we are incrementing pointer
loop we are in increment.

* the next element of the array on each
5
for(int x=0; x<var2; x++)
.ﬂ . ﬁm .__r:,: X *ﬂ__.m.ﬂ.u.u.
printf(“Value of var_arr[%d] is: %d \n", X, L
/*increment pointer for next element fetch*/

varl+ +;

i
int main()
{
int var arr[] = {11, 22, 33, 44, 55, 66, 77},
myfuncn(var_arr, 7);
return 0;
h
Output :
Value of var arr[0] is : 11
Value of var arr[1]is : 22
Value of var_arr[2] is : 33
Value of var arr[3] is : 44
Value of var_arr[4] is : 55
Value of var arr[5] is : 66
Value of var_arr[6] is : 77

Strings and String functions with examples

String is an array of characters. We will see how to compare two strings, concatenate strings,
copy one string to another & perform various string manipulation operations. We can perform such

&..ﬁ..:.num using the pre-defined functions of “string.h” header file. In order to use these string
functions you must include string.h file in your C program.

String Declaration :
Method 1 : _
char address[] = {‘T’, ‘E’, ‘X, ‘A, ‘S, \0'};
Method 2 : The above string can also be defined as -
char address[] = "TEXAS";

In the above declaration NULL character (\0) will automatically be inserted at the end of the string
— What is Null Char “\0"?

"\0” represents the end of the string. It is also referred as
String I/O in C programming
Read & write Strings in C using Printf() and Scanf() functions :

String terminator & Null Character.

#include <stdio.h>
#include <string.h>
int main()

{

/* String Declaration*/

char nickname[20];
printf(“Enter your Nick nName:”);
/* 1 am reading the input string and storing it in nickn: §

* Array name alone works as a bage address of array so
* we can use nickname instead of gn;: Iay so

%

scanf("%s", nickname):
/*Displaying String*/
printf(“%s",nickname);
return 0;

1

Qutput :
Enter your Nick name: Negan

Negan

e Note : %s format specifier is used for strings input/output
Read & Write Strings in C using gets() and puts() functions : .
#include<stdio.h>
#include <string.h>
int main()
1
/* String Declaration*/
char nickname[20];
/™ Console display using puts */
puts(“Enter your Nick name:”);
/*Input using gets*/
gets(nickname);
puts(nickname);
return 0;

#include <stdio.h>
void main()

1
int i,n,a[100];

Scanned by TapScanner

152 # Programming in C

printf(“ | f: “if
printf(“Input the number of elements to store i the array :");
scanf(“%d”,&n);

printf(“Input %d number of elements in the array ‘n”nj;
for(i=0;i<n;i++)
{
printf(“element - %d : ",i);
scanf(“%d”, &al[i]);
I
printf(“\nThe values store into the array are : \n"};
for(i=0;i<n;i++)
{
printf(“% 5d”,a[i]);
}

printf(“\n\nThe values store into the array in reverse are :\n");
for(i=n-1;i>=0;i—)
{
printf(“% 5d”,a[i]);
}
printf(“\n\n");
}
Sample Output:

Read n number of values in an array and display it in reverse order:

|||l|..+.I.|||||l.ll.l.llIlI||Ill......lr.lllllllll.l|..|||..I|I.I|.I|I|I.|-:.||-.|.l.l

Input the number of elements to store in the array :3
Input 3 number of elements in the array :
element - 0 : 2
element-1:5
element - 2 : 7
The values store into the array are :
2 H 7

The values store into the array in reverse are :
N

Program to count even and odd elements in array
‘\ﬂ.u_..

* C program to count total number of even and odd elem
=
#include <stdio.h>
#define MAX_SIZE 100 //Maximum size of the array
int main()

15

ents in an array

int arr[MAX_SIZE];
int i, size, even, odd;

/* Input size of the array */
printf(“Enter size of the array: ”):
scanf(“%d”, &size);

/* Input array elements */
printf(“Enter %d elements ip array: ”
for(i=0; i<size; i+ +)

el t 1 I, |

{

scanf(“%d”, &arr[i]);

r | Y |

/* Assuming that there are 0 even and odd elements */

even = 0;

odd = 0;

for(i=0; i<size; i++)

.ﬁ .] O L
/* If the current element of array is even then increment even con
if(arr[i]%2 == 0) ..
{ . p 1

even+ +: 5 | _“..J,du
} REAT
else | O
(ol
odd++;
}
v

printf(“Total even elements: %d\n", even);
printf(“Total odd elements: %d”, odd);
return 0;

b
Output:

Enter size of the array: 10 e et
Enter 10 elements in array: 5 6 4 12 19 121 1 ..qm_m._ |
Total even elements: 3

Total odd element: 7

Write a program to print lower triangular mat m&m ug
/* Program to find Lower and Upper Triangle Matrix °/
#include <stdio.h>
int main()

Scanned by TapScanner

e

Eﬁ Eﬂm_ cols, 1, ¢, Em&.ﬁ E: HE

a__.mnug /*Clears the Screen*/

printf(“Please enter the number of rows for the matrix: ”);
scanf(“%d”, &rows);

printf(“\n”);

printf(“Please enter the number of columns for the matrix: ");

scanf(“%d", &cols);
printf(“\n”);
printf(“Please enter the elements for the Matrix: \n");
for(r = 0;r < rows; r++)
{

for(c = 0;c < cols;c++)

{

scanf(“%d”, &matrix[r][c]);

}
printf(“\n The Lower Triangular Matrix is: ”):
for(r = 0; r < rows; r++)
{
printf(“\n”);
for(c = 0; ¢ < cols; c++)
{
if(r >= ¢)
{
printf(“%d\t ", matrix|r][c]);
}

else

{
printf(“0");
printf(“\t”); .

}

printf(“\n\n The Upper Triangular Matrix js: »
for(r = 0; r < rows: r++)

{

w.

printf(“\n”);
for(c = 0; ¢ < cols; C++)

}

C program for matrix addition:

#include <stdio.h>
int main()

{

if(r > ¢)

{

printf(“o").
pri =~mﬁ=#..f
}

else

{
printf(“96d\t ». matrix[r][c]);

}
getch();

return 0;

. - l._.u 'J ._
:ﬁ m, n, ¢, d, first[10][10], second[10][10], mEﬂ_H::HEE. \

printf(“Enter the number of rows and columns of ; Em Ti X\n”)
scanf(“%d%d”, &m, &n): : §

printf(“Enter the elements of first matrix\n");

for (c =0;¢c < m; c+ +)

for (d = 0;d < n;d++)

scanf(“%d”", &first|c][d)):

printf(“Enter the elements of second matrix\n”);

for (c = 0;¢c < m: c++)

for (d =0;d < n;d++) &

scanf(“%d", &second[c][d]); @
printf("Sum of entered matrices:-\n");
for (c = 0; ¢ < m; c++4)

{

3
£

.

for (d = 0;d < n;d++) P
{ ...
sum|c][d] = first[c][d] + mmnan&&_; s
printf(“%d\t”, sum[c][d]); I
}
printf(“\n”);

Scanned by TapScanner

—
&
-
-
(©
O
Example: Access members using Pointer nmun
To access members of a structure using pointers, g0
we use the -> operator. —
#include <stdio.h> S 1 P
struct person m.ﬁ ﬂ.co “Lre O
: i S
int age; D
float weight; Structure is a group of variables of differen data types e -
3 example to understand the need of a structure in C progra a0 gt - -
int main() Lets say we need to store the data of students like student name age, addr bty m
{ doing this E::E be creating a Emﬁmﬂ variable for each attribute, roﬂn....n.i_ﬁ.waﬂ S
struct person *personPtr, person1; data of multi n_,_.., students _:E_..h In that case, you would need to create these several variable
personPtr = &person1: each student. This 1s such a big headache to store data in this way. e ol
printf(“Enter age: "): We can solve this problem casily by using structure, We Can create a structure that has mermhe
scanf(“%d”, &personPtr->age): for name, id, address and age and then we can create the varables of this structure for eact tdeat. |
printf(“Enter weight: ”): Structures are used to represent a record. Suppose you want to keep track of your books ir
scanf(“of" &personPtr->weight): library. You might want to track the following attributes about each book - .
printf(“Displaying:\n”): " M:h,r -t 5 ME__“E
printf(“Age: %d\n", personPtr->age); dSubjec % Book ID
ﬁﬂmmﬁ._.uimu.mrﬁ %lI", personPtr->weight): — Dmmjm:m a Structure
return 0;

} To define a structure, you must use the struct statement. The struct statement defines
a type, with more than one member. The format of the struct statement is as follows-
struct [structure tag]
{

member definition;
member definition:

=

member definition:
¢ [one or more structure variables]; o
The structure tag is optional and each member definition is a normal variable de

- Inti; or float £ of any other valid variable definition. At the end of the structure M
| final semicolon, you can specify one or more structure variables butitis optional. Here
Would declare the Book structure -
struct Books
{
| char title[50];
char author[50];
char subject[100];
int book id;
} book:

N
i e
i

emeberl, value for memeber2 ...so on fo; all

#include <stdio.h>
~ /* Created a structure here. The name of the structure
X struct StudentData
{
char *stu_name;
int stu_id;
i int stu_age;
b)
5 | int main()
{
/* student is the variable of structure StudentData*/
struct StudentData student;
/* Assigning the values of each struct member here */
student. stu_name = “Steve”;
student.stujd = 1234;
student. stu_age = 30;

is StudentData. */

}
—n_._..p_nnm..mazm Structure Members

To access any EnEun_” of a structure, we use the member access operator (.). The member access
operator 1s coded as a period between the structure variable name and the structure member that we

wish to access. You would use the keyword struct to define variables of structure type. The following
example shows how to use a structure in a program -

#include<stdio.h>
- #include <string.h>
- struct Books

{
char title[50];
char author([50];
char subject[100];
int book id;

......

struct Books Book11;
struct Books BookZ; q
/* book 1 specification */ A
strcpy(Bookltitle, “C Programming),
strcpy(Bookl.author, “Gopal”); e
strepy Bookl.subject, “C ﬁwcmnmb.ﬁnbm .ﬁﬁs—ﬂﬁu . N
Book1.book_id = 221100; M .
/* book 2 specification */

strcpy(Book2.title, “Telecom Billing”);
strcpy(Book2.author, “Zara Alj"); |
strepy(Book2.subject, “Telecom Billing Tutorial”); |
Book2.book_id = 6495700;

/* print Bookl info */

printf(“Book 1 title : %s\n”, Book1.title);

printf(“Book 1 author: %s\n", Book1.author):;

printf(“Book 1 subject: %s\n”, Book1.subject);
printf(“Book 1 book_id : %d\n", Book1.book_id);

/* print Book2 info */

printf(“Book 2 title : %s\n”, Book2.title);

printf(“Book 2 author: %s\n”, Book2.author); -
printf(“Book 2 subject: %s\n”, Book2.subject); &
printf(“Book 2 book _id : %d\n”, Book2.book id);

return 0;

}
When the above code is compiled and executed, it produces the fe

Book 1 title : C Programming
Book 1 author : Gopal , 2 el
Book 1 subject : C Programming Tutorial

Book 1 book id : 221100

Book 2 title : Telecom Billing

Book 2 author : Zara Ali .
Book 2 subject : Telecom Billing Tutorial |
Book 2 book id : 6495700

—r structures as Function Arguments e
: You can pass a structure as a function argument ?E«Emﬁmé

Pointer. LR
#include <stdio.h> Lt
#indude <string.h>
struct Books

{

char title[50j;

=

Scanned by TapScanner

- charauthor[50]

-

£l char subject[100];
~ intbook id
" /* function declaration */
. void printBook(struct Books book);
int main()
1{

struct Books Book1; /* Declare Book1 of type Book */
. struct Books Book2; /* Declare Book2 of type Book */
/* book 1 specification */
strepy(Book1.title, “C Programming”);
strepy(Book1.author, “Nuha Ali");

strepy(Book1.subject, “C Programming Tutorial”):
Book1.book id = 6495407

/* book 2 specification */
strcpy(Book2.title, “Telecom Billing”);
strepy(Book2.author, “Zara Ali”);
strepy(Book2.subject, “Telecom Billing Tutorial”);
Book2.book_id = 6495700
/* print Bookl info */
printBook(Book1):
/* Print Book2 info */
printBook(Book?)
return 0;
'

void printBook(struct Books book)
¢ |

Printf(“Book title : 94s\n” book.trtle):
printf(“Book author- %s\n”, vcnw.miroz”

printf(“Book subject: %s\n", book.sub ject)
printf(“Book rcuwlauﬁﬁ

w
L]

) \n”, book.book_jd):
When the above code s compiled and ,
Book title : C Programming TR endexceuted, it produces e following result .
Book author : Nyha Al
Book subject : C pro

Book author : Zara Aj;
Book subject : Telecom Billing Tutorig]
Book book id : 649570

o

i

—\zm_mﬁmn_ Structure (Struct Inside Another Struct) -

e

you can use a structure inside anothey
cture, the struct struct name acts ds a new data
stru

he data type of other data members Sounds ¢op

gxample of Nested Structure

Lets say we have two structure like this -
Structurel : stu_addresg
struct stu_address

{

int street;

char *state;

char *city;

char *country;
/[Structure2: stu_data
struct stu_data
{

int stu_id;

int stu_age;

char *stu_name:
};

struct stu_address stuAddress:
'

As you can see here that [have nested a structure inside another structure.

. g]__ 7%
Assignment for struct inside struct (Nested struct) .

2 oud
Lets take the cxample of the two structure that we seen above to understand the logic

st A
struct stu_data mydata; sl

eI o ks
mycata.stu_id = 1001; ; iaine, S
Ewamﬁm.mzfmmm = 30: TN e

-.r. >

.-.J.. .-..-
1
< i

mydata. stuAddress. state = "UP”; //Nested struct assignment

Acces a
S Nested structure members v o
Using chain of " operator.

Suppose vVou want to display the city alone from nested s
Printf(*%s”, mydata. stuAddress. city);

Use of Typedef in Structure -
sr.~Qv €def makes the code short and improves H.mﬁ_mr__&_bﬁm%ﬁ e discussion
Hmz_ ; USing Structs every time we have to use the _mumm_w. X, W a I
of S “Omplex and less readable. The simple solution to this 1ssue

Mruct, ¢ W 3V,

de without typedef

Scaned by TapScanner

. ._...;._L ..._....._. 3
{ ._ n- n._r_ ____%ﬁﬁ.
2 W ___%wﬁ“mciﬂ.
i ‘my_city;
char “my_country;
s
struct home_address var;
ﬂﬁﬂ.gﬁ kﬁm_.._m._,.__.
//Code using tyepdef
h_ typedef struct home_address

| {

int local street;
char *town;
char *my_city;
char *my_country;
} addr;
addr var1;
var.town = “Agra”;

Instead of using the struct home address every time you need to declare struct variable, you can
simply use addr, the typedef that we have defined.

— ___Pointers to Structures

You can define pointers to structures in the same way as you define pointer to any other variable :
struct Books *struct_pointer;

Now. you can store the address of a structure variable in the above defined pointer variable. To
* &bn the address of a structure variable, Emnn the ‘&’; operator before the structure’s name as follows -
struct_pointer = &Book1;

?ﬂa access the members of a structure using a pointer to that structure, you must use the -> operator
OWS :

struct_pointer->title;

Let us re-write the above example using structure pointer.

#include<stdio.h>
#include <string.h>
struct Books
{

- chartitle[50];

derhe i vad %ﬁﬁ@wﬂu.mme‘._u

- char subject[100];

3 ..E,..w. ﬂnﬁﬁwugwlw_ﬁ% »

e L

-
i

. .-.-'; i _:;__‘q,';?mh.:

+ function declaration */
/ -& ﬁﬂwﬁﬁmcuﬁ struct Books *book 1)l

:: main() ik G

.H struct Books Book1; /* Declare Bookl cw

struct Books BookZ; /* Declare Book2 of aﬁm maaw

/* book 1 specification */

strepy(Bookl. title, “C Programming”);
strcpy(Book1. author, “Nuha AM”); ‘0
strepy(Book1. subject, “C Programming A_Ecsmi: 7 0
Book1.book_id = 6495407; , ot
/* book 2 specification */

strcpy(Book2.title, “Telecom Billing”);

strcpy(Book2. author, “Zara Ali");

strepy(Book2. subject, “Telecom Billing Tutorial”);
Book2.book_id = 6495700;

/* print Book1 info by passing address of Book1 */

print Book (&Book1);

/* print Book2 info by passing address of Book2 */
print Book (&Book2);

return 0O; L v 4

}
void printBook(struct Books *book)

{
printf(“Book title : %s\n”, book->title);

printf(“Book author : %s\n”, book->author);
printf(“Book subject : %s\n”", book->subject);
printf(“Book book_id : %d\n”, book->book_id);
} e
When the above code is compiled and executed, it produces the fo mm._, 5
Book title : C Programming L
Book author : Nuha Ali
Book subject : C Programming Tutorial 8
Book book id : 6495407
Book title : Telecom Billing
Book author : Zara Al bt
Book subject : Telecom Billing Tutorial g
Book book id : 6495700

—fcme of mn_._._nEqmm

Scanned by TapScanner

B et canbe used in drawing and floppy formatting.
- 6. C Structures can be used to clear output screen contents.
ey ructures can be used to check computer’s memory size etc.

ture is E:mnunn of different data type. An object of structure represents a sin
_w we want more than one record of structure type, we have to create an array o
ew.ﬁﬂ. bm we know, an array is a collection of similar type, therefore an array can be of s

Syntax for declaring structure array
struct struct name
{
datatype vari;
datatype var2;

struct struct_name obj [size |[;

Example for declaring structure array
#include<stdio.h>
struct Employee
{

int Id;

char Name[25];

int Age;

long Salary;

I
. void main()
__.,. t
§ int i;
struct Employee Emp| 3 |;
for (i=0;i<3;i+ +)
{
printf(“\nEnter details of %d Employee” i +]);
printf(“\n\tEnter Employee Age :*):
scanf(“%d”,&Empli].Id);
printf(“\n\tEnter Employee Name:”):
anf(“%ld”,&Empl[i].Name);

//Statement 1

T i R g = e 1

printf(“\n\tEnter Employee Age :"):
iz scanf(“%d”, &Empli].Age);

gle recorq j,

tructure type.

printf(“\n\tEnter mEE&ﬁ&w !

mnmﬂmﬁz @.@Hﬁm-. MLWEHHHHH Sa ,;H 2
} T
ﬁﬂam_.ﬂﬂﬂmﬁm__m of mEtch«mmm) Ry
for (i=0;i<3;i++)

printf(“\n%d\t%s\t%d\to%ld” Emp(i]
}

Qutput :
Enter details of 1 Employee

Enter Employee Id : 101

Enter Employee Name : Suresh

Enter Employee Age : 29

Enter Employee Salary : 45000
Enter details of 2 Employee

Enter Emplovee Id : 102

Enter Employee Name : Mukesh

Enter Employee Age : 31 o

Enter Employee Salary : 51000 g
Enter details of 3 Employee

Enter Employee Id : 103

Enter Employee Name : Ramesh

Enter Employee Age : 28

Enter Employee Salary : 47000
Details of Employees

101 Suresh 29 45000 -
102 Mukesh 31 51000 A
103 Ramesh 28 47000 ~

...! _r.,
._m,,

[n the above example, we are getting and displaying Eng
Statement 1 is creating an array of Employee Emp to mﬁnﬁm ® Tecor

Array within Structure)

As we know, structure is collection of different data type. r_#n
an array as wel].

SYntax for array within structure

struct structname

{
datatype var1; //normal variable
datatype array [size]; // array variable .:q
.
N datatype ﬂE.Z

Struct structname obyj;

Scanned by TapScanner

}

[Example for array within structure

struct Student
{
int Roll;
char Name[25];
int Marks[3]; //Statement 1 : array of marks
int Total;
float Avg;
s
void main()
{
int i;
struct Student S;
printf(“\n\nEnter Student Roll : ”);
scanf(“%d”,&S.Roll);
printf(*\n\nEnter Student Name : ”);
scanf(“%s",&S.Name);
S.Total = 0; .
for (i=0;i<3;i++)
{
printf(*\n\nEnter Marks %d : ”, i+10);
scanf("%d",&S.Marks[i]);
S.Total = S.Total + S.Marksl[i];
}
S.Avg = S.Total / 3;
printf(*\nRoll : %d”,S.Roll);
printf(*\nName : %s”,S.Name);
printf(“\nTotal : %d”,S.Total):
printf(“\nAverage : %t”,S.Avg);

Output :
Enter Student Roll : 1

Enter Student Name : Kumar
Enter Marks 1 : 78

Enter Marks 2 : 89
Enter Marks 3 : 56
Roll : 10

Name : Kumar
Total : 223
Average : 74.00000

[the above nnmEEn we have created
e student. Marks[] 1s now a Enawﬂ 0
m_nm tor(.) along with object S.

cz_o:m

Like Structures, Union in C Programming ;
in a structural way. A system reserved k

Unlike Structures, the C union varjab] ped)
ddress, etc.). Th ey

mbers (i.e., age, name, a e size of the Ao el
“Mwn largest union member. Due to this, we can save much Enaﬁon_oog. M

Due to this common memory, we can’t access all the union |

C union variable holds one member at a time, we can access one. E@F the s
; INIEIn L

How to define a union?

Jata
¢ will allocate &n

The basic syntax of the Union in C Progra e |
union Union Name _9&5_1

{ 0d
Data_Type Variable_Name; //Union Member
Data_Type Variable Name; /Union Member

t

& Union Zu:._m Name you want to give for the Union. For E

students.
< Data_Type : Data type of the variable that you want to declare. m.aﬁ eXi u.m
etc. a7 5l

% Variable_Name : Name of the variable. For example, id, nmnuE_

Create union variables
When a union is defined, it creates a user-defined type. However, no memory is allocat
allocate memory for a given union type and work with it, we need to create vari ﬁ._. les.

Here’s how we create union variables.
union car

{

char name([50];
int price:
4
Int main()
{
union car carl, car2, *car3;
return 0:
u. :
Another way of creating union variables is:
union car

Scanned by TapScanner

il G

- charname[50);
e - int price;
A ..ﬁ.}r,, } carl, car2, *car3; .
,. ...u_”. - In both cases, union variables carl, car2, and a union pointer car3 of union car type are Createq

mrguau members of a union
.m.,. < E, e use the . oﬁonm.nﬂ. to access members of a union. To access pointer variables, we yse also |
the > operator. %
In the above example,
- % To access price for carl, carl.price is used.
< To access price using car3, either (*car3).price or car3->price can be used.

Similarities between Structure and Union

I. Both are user-defined data types used to store data of different types as a single unit.

2. Their members can be objects of any type, including other structures and unions or arrays, A
member can also consist of a bit field. +

3. Both structures and unions support only assignment = and size of operators. The two structures
or unions in the assignment must have the same members and member types.

4. A structure or a union can be passed by value to functions and returned by value by functions
The argument must have the same type as the function parameter. A structure or union is _ummm&
by value just like a scalar variable as a corresponding parameter.

5. .7 operator is used for accessing members.

....1_... e i *r
N&. Lo ..m._..h..._.p..

- Emmamznm Between Structure and Union In C

F | C Structure C Union |

The struct keyword is used to define structure. | The union keyword is used to define structure.

Structure allocates storage space for all its|Union allocates one common storage space for all
members separately. 1ts members. Union finds that which of its member
needs high storage space over other members and
allocates that much space.

Union occupies lower memory space over
structure.,

Structure occupies higher memory space.

We can access all members of structure at a time. |We can access only one member of union at a time.

h.:ﬂ.mum the value of a member will not affect Altering the value of a member will alter other
other member of structure. member of structure.

Execution time of structure is fast. Execution time of union is slow.

|III|.|.|—

Several members of a structure initialized once. |Only first member of union cab be initialized. |

ST

ﬁ—_...:h—u le ave rage,

| s

For above structure, memory allocation will pe

.
' -
L Ta
P
P
-- -.-. i
| ...M- _ []

[.

For above union

,.u.nnuiul...|.||1||
int mark-—2B

char name[6] —6B
double average —8B

Total memory
allocation =2+ 6 + 8 = 16 Bytes

allocated since |

maximun space o me
other data types,
Total memory allocati

o

R

||||.I|I.|II||.-|

i

The following program demonstrates how we can useneste i

#include<stdio.h>
struct person

{

char name[20];
int age;
char dob[10];
&
struct student

{

struct person info;
int roll no;
float marks;

1

int main()

{
struct student s1;
printf(“Details of student: \n\n");
printf(“Enter name: ”);
scanf(“%s”, s1.info.name);
printf(“Enter age: ”);
scanf(“%d”, &s1.info.age); -
printf(“Enter dob: ”);
scanf(“%s", s1.info.dob);
printf(“Enter roll no: ");
scanf(“%d”, &s1.roll_no);

iy
Tha =

=,
.11
L

i

Scanned by TapScanner

v

*mﬁ.. uuhn?.mnE
: _._. ‘no: %d\n”, s1.roll_no);
Marks: 9%.2f\n”, s1.marks);

H_mg_ﬁ

Details of student:
Enter name: Phil
~ Enter age: 27
Enter dob: 23/4/1990
Enter roll no: 78123
Enter marks: 92
& & X E S R R R R R R
Name: Phil
Age: 27
DOB: 23/4/1990
Roll no: 78123
Marks: 92.00

/* Union in C Programming example */

#include <stdio.h>
#include <string.h>
union Employee
{
int age;
char Name[50];
char Department[20];
float Salary;
e

int main()

-l

“union Employee emp1;

union Employee emp2;

empl.age = 28;

strcpy(emp1.Name, “Chris”):
strcpy(emp1.Department, “Science”);

Eﬂﬁmﬂg system program ran fine

ﬁuEE__mEEcwmm A\pe
EEE_,MEEE_Q Nan

printf(“Employee ma.m_..q .ww Mm, n
printf(“Details of the mmnoa

emp2.age = 30;
printf(" Employee Age = 954 \n»
strcpy(emp2.Name, “David”);
printf("” Employee Name = %s F::.mﬂ.& 1
strcpy(emp2.Department, :.Hmnrbo_nmwau " m
printf(“ Employee Department = 45 \p h__..__;;_ L
emp2.Salary = 35000.20: |

printf(* Employee Salary = 9 2f \n mﬂﬁm_iw%ﬂﬂ
return O;

Scanned by TapScanner

