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Rationale : For solution of different problems ‘C’ is a very powerful high level
language. It is widely used in research and engineering problems. A software
(echnician aware of this language will be useful for working in computer environment.
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Basic Concepts

L

7% 1, Variable 701 ? 4 f6a waR & 81 #? a1 =1 WoR & Variables @1 Example &
gR1 qof &R |
ST—Computer W #1¢ i Operation #13 % f&T0 F& Data #1 requirement &l g1 38 Data
#1 Computer % Memory ¥ Save f&1 St € 5@ & Memory 3¥ei-37em Cells ¥ 921 €t 8 R &
Cell &1 39T HAT-31eT Address €1d1 21 38 Address § Data #! Access (W@) &4 & foig &
Store 1 % 1T 39 Datas F1 Variable 1 Constant & 9 & <1 ST 21

Variable

Variable T A’ A1 Entity 1 #8 S € S ff Programming ¥ T% 9K ¥ %ad T value
F1 store FHIAT € a4 WY & THH! value, Program % Execution/run time W S€el (Change) i =

gl 2l
Declaration of Variable

Program ¥ T Variable #I use FT1 8 @ o9 Teat 30 s €, foa == samn 5 ® &5
variable &% ¥R % Data type € (int, char, void, float, etc). ¥R Memory ¥ fa =

(Address) I 39 Syntax &1 {75 ¥HR ¥ represent HT—

Datatype Variablename ;
74 syntax % 38R W f&H @ Variable #1 f75 #R Declare f&a1 ST dear 28—
Example :
int x;
Tl W x TF integer (int) HR & Variable e e e Integer Value #1 &
store M|

Initialization of Variable
~ f#Ht Variable % 371 (Declaration) & T8 39! H18 TF value assign () = F whEa 1
(Initialization) %1 Sl €1 fFH variable 1 value F1 &1 ¥R ¥ Declare f&ar S —

1. Static Initialization
2. Dynamic Initialization
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1. Static Initialization : 39 ¥&R 1 Initialization Program ¥ Variable Declara
Y & HH BT A FE Value Assign F 2 S €1 I8 FHR FH initialization Static, Initig)
FEoTdl 81— g

void main ()

{

intx;// T8l W x W F1, 3R Integer Type %1 variable ST Tl =
x=10;// 981 W x %I value 10, Initialize/Assign fan a1 21

Note : ¥ U®R & initialization ¥ Program & &R & Change &1 foar o ©
2. Dynamic initialization : 39 Y&R & Initialization & f&& variable & value Pro

% Execution/run #{9 F N (time) fear @ T4 WK ¥ initialize fF3 T value 1 chan
ST Al 81 Y fr— N

void main ()
{
int a, b, c; // T8 W Hae Variable a, b, ¢ Declare fa1 721 2
// T FTE Value initialize T8l far w2

printf (“Enter value of a & b”); // @& W a 3R b F1 value user q IS A @ 2
scanf (“% d % d”, & a, & b):
// user ¥ T4 T value 1 Memory ¥ Save T ¥ AT scanfl ) #1 &M e s 2
c=a +b;// T8 W a 3R bF value I ¢ ¥ Assign foFan mn &)

printf (“%d”, c); // ¢ F1 value & S  fefu)
}

Note : 33 Program # a, b 3R ¢ @ value 78 o mar 8, 78 Program 5@ Execute &

Wuserﬁgmm%ﬁ?aGﬂ?b?ﬁvaluewéﬂmwmaaﬁj{baﬂ&%

change f&a1 51 o &1 A
i ‘C- S s

Types of Variable b
<& Program ¥ Variable &1 use %1 & oI &1 YR % variables & use fwa W e —
(i) Local Variable
(ii) Global Variable

1. Local Variable : 5@ %% Variable & Funtion (Main () % (e 3it Faet) be

;1;:1 & YA (use) fFa1 1 T B, SR AL, @ §9 FHR F Variable, Local Variable
ﬁ-?— ;

void main ()

{

inta, b, c;
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‘ W—Programming language ‘C’ %, ¢ Variable % |9 T Data type W& gt ¢ il
aamréfm’aaﬁmVanable%ma% ' h

Te W x T variable & < fi int (integer) type %1 & THY com

piler # I¥ Tq S| tﬁ-g
Fae R Fad integer value # store FAM AR 39 value #1 store T % fau 2 bytes @1 melm_ly
occupy F| o
Types of data type

‘C’ Programming language ® %% TR Data type & fra fErRIvaTd (qualities) 37em-srem {
T4t Data types 1 categories ¥ &7 T §—

1. Primary (Built-in)/Fundamental Data type.
2. Derived Data type.
3. User defined data type

1. Primary (Built-in)/Fundamental datatype :

‘C’ Compiler 99 YR % Primany data
types £l support Al 2 —
(@)int (2)char (3) float (4) double  (5) void

4 Data type 7% YR %1 Values Store &, FHTT memory occupy (1), 37%1 Range +
@TH, 3R §7h1 Access specifier 1 g € represent H’ﬁ'ﬁl

Data type Value Size = Range S

int numeric 2 -32768 to 32767 %d, %i
char character 1 -128 to 127 . %
float decimal 4 3-4E-38t03-4E + 38 %f
double decimal 8 1.7E - 308 to 1-7E + 308 Plf
void (null) — — —

fepan ST wrdifes ag g memory oéﬁupy qﬁm":‘g : f

use 01 ST 81 S 5 B Value return wWewm |

2. Derived Data type : ¥ 3§ Data types B & &1 i Fundamental/Built-in data type §
et a4 4 21 59 fr— - i
(a) Array (b) Structure (c) Union

(A) Array : Array, u% & TE & FF ;R elements/values U HIE (collection) 2| 3Ha!
EEarek:| represent fogy S 2 —

R

Note : void data type 3 Null type %F"fmf""-ﬁ Tﬂ]ﬁi %W

(d) Function ete,
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{
return (x + y); L
} g
3. User defined datatype : User % 3 379 %™ %! U &1 & o0, TF 71 amqr gl
type, User defined datatype Feamar 21 sE—
1. typedef 2. enum

L. typedef : f#Hl identifier #I, f primary/fundamental data type ¥ wae
typedef, keyword F1 use fan sman 21 :

o
b

) &

7
typedef UF keyword ? f5rs gm0 fveft identifier #1 datatype N @ ST Wl &1 T fort
¥ syntax fe@i—
typedef datatype identifier;
7€ W Datatype F1 Fundamental/derived datatype % 3 identifier, fS/@@! Data ty
user &I typedef % ERI convert FT 1
Example : typedef int marks;
379 marks T identifier T8l dfcsh TF Data type 99 S : 3Gl marks &l &S intﬂ
use fFa1 51 T 2—
Example : marks mark 1, mark 2;
¥gl W marks T&F int type %1 data type 2 3 mark 1, mark 2 integer type % variabl
2. enum : enum @& keyword 2 S % enumeration short form %I enumel‘atiﬁfr
Interger Values %1 Collection 1 38 5 SR ¥ represent & s 2—
Syntax : enum identifer { value 1, value 2, ...., value n};

78l W identifier T user defined enumerated data type 8 f&&1 W4T variable # value
% braces # declare FT F fore fFan wram 21

declaration

R

enum day { Monday, Tuesday, Wednesday, Thursday, Friday, Saturday } ;
Example : enum day day 1, day 2, day 3;

day 1 = Monday

day 2 = Tuesday

day 3 = Sunday || An error occurs.

enum ! first name 1 value ¥ (0), 3T (second) name F value T (1), 36 &
g{ name &1 value TH-TF Hlh El%"'ﬁl \

(%a:) € assign &1 wwm S fH— Tarin
. enum day { Monday, Tuesday, .......... Saturday}; s ko
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78l W Monday #! value 0 @1 Tuesday %t value 1 3t Saturday # value 5 3t

3. Data Structure 391 &1 #? 39 classificaton 3 |

IT—fF4t At Program ¥ Data %! fafy= wom o Arrange T2 S 5w @) et ' Data @

logical 1 Arithmetical Representation € Data Structure g 2?1 fFet Dat
a Representati
#1 choose FTAT 31 concepts W ¥ HTar §— . . s

1. Data ¥ Arranged &1 1T % 5% Actual Relation & YR (Represent) #7 w¥|
2. ﬁmEasymm%awmwﬁm@mammw.
Classification of Data Structure :

Primitive Data Structure

} Ladaae

int char float double

Linear o
Data Structure :
S e
Stack Queue Link list Tree

Primitive Data Structure
UH Data type S Directly f#d Machine ¥ communicate F % Primitiy
Fedd 2l
I fF— int, char, float, double, etc.
Non-primitive Data Strucuture
T4 Data type S indirectly f&t Machine ¥ comm
tructure &AM 2l : sosn ol
S fF—  Array, Structure, Function, list, ef
Linear Data Structure G ;-
F% UF UH Data Structure ture
4l sequence % ¥4 ¥ & BT 21 L
Array, linked list, Stack
L : «i&r
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II. Lirked list : link list, Data item #1 T% linear collection & f5@ node #&d & Li
order %! Pointers % S maintain 91 STl 81 & node 3 WM ¥ divide Bl &1 3

III. Stack : Stack ! Last-in-first-out (LIFQ) system %t Fg1 W 21 T T liner link Jj
fs# Insertion R Deletion T & end ¥ fFan wmam € 5y Top F&d 8 Stack ¥
Insert 3R Delete %33 % f&Tu %9 &1 & Function §— :

(a) Pusl:é : Stack # Data FI Store/Instert/Add % % fTT Push function & !F-ﬂ"[€

Sl & b

(b) Pop : Stack ¥ fF4 Data i Delete/Remove & & fTT Pop function &I

S 21 ol

(iv) Queue : Queue #! First-in-first-out (FIFO) system el Sl 2 Queue U o9 WeHR
Data structure & ¥ Stack #! T& & Information #1 Add 1 31X Delete FTI #t

FAM & Bt sfewh T8 U w0 § Data 1 Add 1 ST # 3 TR W Y Delete 1S

#1 f519 3R | Data 1 Queue § Add f&a1 ST @ 38 Rear #&d 81 {58 € ¥ Queue #
Information %1 Delete fFan a1 € a7 front Feelar 21 .

(v) Tree:Tree T Non-linear Data structure #1 Tree & Data/item I store F¥H & fau nod
1 S fF91 S 21 Tree % T nodes edges % BRI ¢ B4 21 Tree ¥ present T+ Dat
item %I Hierarchical relation represent a1 ST 21 Tree &1 fiafo 9% Root ¥ fd

S 21 Tree % Y& node % ST T node &l & f58 Parent node &a Sl 21 Node ¥ & %

4= 9l node # child node HE @ 2 T tree, vertices 3R edges &1 T& collection &I
Example :

Graph : F-Fl Data Structure Elements % T relationship #1 represent foAl
Hierarchical relation % i f&an <1 waha1 21 TH Data Structure St frgh fasr Relationship %I
represent FA@ € Graph Data structure FEET 21 Set of nodes 31 set of edges ®1 GrapE Fed
%IGraph?fTW%'@lﬂ%— ki

1. Direct Graph 2. In-direct Graph
¥¥ 4. Data Structure | 8 @t operation 3 THHTEY|

IT—fFE  Data Structure W Different operation %! perform f&ar S ,m
Structure W &4 9 ¥ 6 YR F operations perform f&d w4 §— K- :
1. Insertion

4. Merging

Eageti) ¥
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2. Searching 5. Traversing

3. Sorting 6. Deletion

1. Insertion f?m“r fe3 T Data Structure & fret = Data ! Add =01 %t wfpa =t
Insertion FEl Eicce ele:ment 1 fF f I Insert &= 1 5% %1 s p ta F1 D
structure ¥ SUEIT element % =€ Insert fram Sy T special operation appezda%ma;

TF U situation i 3T & 59 Data structure 5 #E 3R Element insert T} a1 &1 w=ay
situation 1 overflow 21 9T € it Data Structure T8 9 & Full 3 , ¥

Emample : 32 & Array & fsrga? size 30 1 € §89 25 element Ugd & & ¥ o/
element %1 9 Array list TR 0% Position 1z STE @ ufdan (insertion
operation Fga 2
2. Searching : Data structure o ft element 1 3Iufeafg =t represent 1 & AU Data
structure 9 search operation perform f&a1 51 #1 %18 search @1 41 linear 07 1 Binary Search
Bl Key element % 3T9R ¥ ffwdt Data structure ® Search operation perform 51 w1 2

Example : oM & (& Array R size 5 2 3w 10, 9, 20, 11, 6 element & 378 ¥
element 20 @I search ¥ 8 @ ¥ad Ugd Array ¥ Ist element & 20
&I compare H 8 3R last qeb a1 S 2 g 20 39 Array  fird e
g dl $9 Operation & successful i 71 fie W unsuccessful &l ST
I :
3. Sorting : f&i Data Structure % d+ft elements Fi Ascending order & Descending order
H Arrange &l sorting shecidl 21 operation %1 Insertion, selection I bubble sort % ZRI
perform fan <rar 2l k
Example : e & Array 3 57 size 10 8 3R 39 10, 20, 8, 7, 28, 26, 40, 50,
11, 18 elements 2 Sl 5 f5eft oft order & Arrange Tl g 39 Arrayﬁ =
Ascending order § Arrange {41 ST 1 78 order 7, 8, 10, 11, 18,20,
26, 28, 40, 50 T & i
4. Merging:ﬁﬁ"fa lists A 3 B fSa1 size M 3R N%,Eﬂﬁ@ﬁmﬁ?%@hstsﬁ
F2d (Merge FT3) % foq U G list C 1 SId &l {11 size M + N elements &1 &I 9

W= F1 F74 % feTw Merging operation &I S&Xd Tl
Example : @ f& a1 lists, frd ugel list # 6 elements, I
elements & 514 & g3 list # 5 elements 8, 1
Ascending order ¥ 2l 37139! merge HY & fe
size 11 81l & lists @1 merge F¥ TR order
35,40,50,60 f@rmi

5. Traversing : {8l Data Structure ¥ SUR¥d ¥+l elements @I Display 0 & fog, &

Data elements #1 F9 ¥ 5 T AR Visit F TS 81 56 96641 H traversing Hed &I
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Example : f&l Data Structure # Sufrd elements & count
element F T SR Visit SFR FT T3, T8 9fkal Tra

6. Deletion : f&& Data Structure ¥ f&dl TF element H remove HH H T
Deletion &4 1 Data Structure ¥ TF THI situation W STl ? v T g W aﬁt
operation &l fiF= <1 TN 39 Situation F1 Underflow F&d &l

Example : {5 Array # 10 elements 10, 20, 30, 40, 50, 60, 70, 80, 9
7 ¥ 70 element ®I remove &% & 79 Array # 9 elen ent
yeR 3—10, 20, 30, 40, 50, 60, 80, 90, 100.

Data Structure

Data may be organized in many different ways : the logical or mathematical Model of
particular organization of data is called Data Structure. The choice of a particalar data mod
depends on two considerations. First, it must be rich enough in structure to mirror the a L
relationship of the data in the real world. On the other hand, the structure should be simpl
enough that one can effectively process the data when necessary.

Algorithm + Data structure = Program

You know that an algorithm is a step-by-step procedure to solve a particular function,
That is, it is a set of instruction written to carry out certain tasks and the data structure is the
way of organizing the data with their logical relationship retained.

To develop a program of an algorithm, we should select an appropriate data structure fo
that algorithm. Therefore algorithm and its associated data structure form a program.

Classification of Data Structures
Data structures are normally divided into two broad categories :
1. Primitive Data structure

2. Non-primitive Data structure

( Data Structure j

-

&
Primitive Data Structure
]
¢ ¢ s °

Integer float ~ Character Pointer Array

Files

Linear List

.

Stack Queue Link list
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1. Bigoh (0) Notation : |
tf'g?ﬂf(nhog(n)mmaﬁﬂ?@?+veconstant(3T'ER) ¢ 3R r

T& boundary 1 n,. e
T Algo #1 run F ¥ Actual Time 10 sec. &dl

system 8 run F04 & fFH Constant value & @19 like cg (n), ’

f(n) ¥ TR fega Bt € 9 upper bound F&d 2| ‘ ;
79 stage #1 Algo =T upper bound dred €, 98 Worst case ?l E
f(n) = 10 sec. e
g(n) = 8 sec.
c=2
379
f(n) = 10sec.

cg(n) =2 x 8 = 16 sec.

2. Omega (Q2) Notation
Big omega (Q) notation Lower bound & siife—
HIAT
f(n) =12sec \
=l
gn)=8
cg(n) =1x8=8sec
cg(n), f(n) & = food 311 21 % best case FEA 2 %
system 39 Algo %1 8 sec # Run 1l € WafF 12 sec § run F
F1 expectation a1 8 @9 Result time 8 sec 2 9 f&d wm w
FH TEA B
3. Theta (9) Notation :
8(g(n) = f(n) Tl C, 3R C, T constants ¥ W 70 F&R & fi *

0= Cign) < f(n) < Cylg(n) Tt n 2 n, & 1T f(n) TH
7 U Hor ® S fet Algorithm #1 Actual Running time 2|

" 8n) - TE TH wem ® W fpd Algorithm gm/
79 (Running time) fem oy '

®F 0 notation A Average Case I € Haers Algo H Fe
| lp. (n) & [y f(n) =1 WA fd Constant & i % oy
- Minimum 3R maximum value % 19 exist FIAT B

(=]

(n) = Q(g(n))

ste

L s
S
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Minimum A ¥ |19 Algo 1 running time C, g(n)

Maximum BF & T4 Algo F1 running time C, g(n)

n, — T TE feR value ¥ 2 @1 ® AR 6 notation 1 condition T A 2

¢, ¥R C, & S-S values & S 4f2 Running time Algo function & F1¥ € dl f(n) 1 W14
qeg o ST

Example :

void main () 12

{ 1
inta b, c; n’
printf (“Enter Two Values”); — 2n
scanf (“% d% d”, &a, &); ————3n
c=a+b; n/2
printf (“The value of cis % d”,c) ; —n + 1
getch () ; n+2
} 1

function f(n)=n+1+n®> +2n+3n+n/2+n+1+n+2+1
: g(n)=n2+n+1 :
@Wboundaryvalue%,ﬁﬁ%ﬁﬁ n 1 HE +ve Tl &
¢, 3R C, 3 values ¥ S g(n) F WY & T minimum 3 maximum value % = 3T 21

“minimum time = 7 sec.
11sec & 3@ 3R Algo 10 a1 9 W complete BT ® @@ f(n) o B

\
LY
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—>n
o f(n)=06(g(n))

e

O-Notation (Upper bound) S .

This notation gives up upper bound for a function to within a constant factor. We
f(n) = o (g(n)) if there are positive constant n, and c such that to the right of n;, the valu
f(n) always lies on or below (g(n)).

cg(n)
ﬁﬂn)

N f(n) = o(g(n))

Q-Notation (deer bound)

This notation gives a lower bound for a function to within a constant factor. We write
= g(n) if there are positive constants n, and ¢ such that to the right of n,, the value of
always lies on or above cg(n).

1 f(n)

cg(n)

n

ShE eSS

o

f(n) = (g(n))
Algorithmic Notation

An algorithm, is a finite step-by-step list of well-defined instructions for solvi
particular problem. The formal definition of an algorithm which uses the notation of a turil
machine or its equivalent. ‘

| AT
The format for the formal presentation of an algorithm consists of two parts. The
part is a paragraph which tells the purpose of the algorithm, identifies the variable

occur in the algorithm and lists the input data. The second part of the algorithm co
the list of steps that is to be executed.



g

Basic Conceptsm \19 )

Comments : Each step may contain a comment in brackets which indicates the main

purpose of the step. The comment will usually appear at the beginning or at the end of the step.

Variable names : Variable names will use capital letters, as in MAX and DATA. Single -
letter names of variables used as counters or subscripts will also be capitalized in the
algorithms (K and N, for Example), even though lowercase may be used for these same
variables (k & n) in the accompanying mathematical description and analysis.

Assignment statement : Our assignment statement will use the dots-equal notation (: =)
that is used in Pascal. For example :

Max : = Data [1]

Assigns the value in Data [1] to MAX. Some texts use the backward Arrow (<) or the
equal sign (=) for this operation. = 3

Input and output : Data may be input and assigned to variables by means of a Read
statement with the following form : ' i

Read : Variable_names

Similarly, messages, placed in quotation marks, and data in variables may be output by
means of a write or print statement with the following form :

Write/print : “messages/variablename”
Procedures : The term “procedure” will be used for independent algorithmic module
which solves a particular problem. The use of the word “Procedure” or “module” rather than
“glgorithm” for a given problem is simply a matter of taste.

- What are Pointers?
A pointer is a variable whose value is the address of another variable, i.e., direct add:

of the memory location. Like any variable or constant, you must declare a pointer before
it to store any variable address. The general form of a pointer variable decla.ration is:

type *var_name; 3

Here, type is the pointer’s base type; it must be a valid C data type and var_
name of the pointer variable. The asterisk * used to declare a pointer is
used for multiplication. However, in this statement the asterisk is being v
variable as a pointer. take a look at some of the valid pointer declarations—

int *ip; /* pointer to an integer */ Lo 18ie

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch; /* pointer to a character */ ;

The actual data type of the value of all pointers, wh
double otherwise, is the same, a long hexadecimal nu

The only difference between pointers of different dﬁﬁh' ty
constant that the pointer points to. g T g




system allocates a location i.e. an ad

e
lared in a progr alue. This location has its own ad

S L is dec
. a variable i o hold the assigne d

le in the memory,

; et show above. : | i
wiise?uzjrsztsswwm has allocated memory location 80F for a variable a.
&B: ¥ ]

B —anta =10 . :
3 Value

Location"" - a < Name of location

SOF\ Address

We can access the value 10 either by using the variable name a or by using its addres|
80F. The question is how we can access g variable using its address? Since the memor
addresses are also just numbers, they can ‘also be assigned to some other variable. Thy
variables which are used to hold memory addresses.are called Pointer variables. 19
A pointer variable is therefore nothing but a variable which holds an address of some
other variable. And the value of a pointer variable gets stored in another memory lo

addf'ess of “a'E) !

=8 M ptl’<~—— Pointer name

o 82C
Pointér - >\ Address of pointer

oo e

T

How to Use Pointers? i
There are a few i i i . i . . 1
i Important operations, which we will do with the help of pomte
(a) We define a pointer variable,
((t():; ?5311g1n the address of a variable to a pointer and
Inally access the value at the address available in the pointer Val‘iable- f

This is d :
address s;ec?fl;z;i USIng unary operator * that returns the value of the vari\ablle'
Y its operand. The following example makes use of these op
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#include <stdio.h>
void main ()

{

int var = 20; /* actual variable declaration */
int *ip; /* pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/
printf (“Address of var variable: %x/n”, & var);

/* address stored in pointer variable */
printf (“Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */
printf (“Value of *ip variable: %d\n", *ip);

J

When the above code is compiled and executed, it produces the following result—

Adress of var variable: bffd8b3c
Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

NULL Pointers |
It is always a good practite to assign a NULL value to a pointer vari.able m case
not have an exact address to be assigned. This is done at the time of variable d

pointer that is assigned NULL is called a null pointer. —
The NULL pointer is a constant with a vlaue of zero defined in several stan

Consider the following program : aorthib

#include <stdio.h>
void main ()

{
int *ptr = NULL;
printf (“The value of ptr is : %x\n”, ptr);
' 80l

When the above code is compiled and execute
The value of ptr is 6.

In most of the operating systems, pro,
address 0 because that memory is reserv
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When we want to store any information (data) on our computer/laptop, we store it in the
computer’s memory space. Instead of remembering the complex address of that memory space
where we have stored our data, our operating system provides us with an option to create
folders, name them, so that it becomes easier for us to find it and access it.

Similarly, in C language, when we want to use some data value in our program, we «an
store it in a memory space and name the memory space so that it becomes easier to access it.

The naming of a address is known as variable. Variable is the name of memory

average, height, age, total etc.
Declaring, Defining and Initializing a variable
Declaration of variables must be done before they are used in the program. Declaration
does the following things : :
1. Tt tells the compiler what the variable name is.
2. It specifies what type of data the variable will hold.

memory space to the variable. Qi

4. Declaration is more like informing the compiler that there exists a variam
following datatype which is used in the program.

Syntax :
Datatype variable_name;
Initializing a variable means to provide it with a value. A variable can
efined in a single statement, like: -Line
Example :
inta=10;
Let’s write a program in which we will use some vanables po
#include <stdio.h> g
// Variable declaration (optional)
extern int a, b;
extern int c;
void main ()
{
/* variable definition: */
int a, b;
/* actual initialization */
a=7,
b=14
/* using addition operator * /
c=a+b;

3. Until the variable is defined the compiler doesn't have to worry about all cat e
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/* display the result®/ : pri
printf("Sum is : %d\n", c)i 3 pri
} }

3 print
Sum is : 21 ppR

print
Types of variable : botel
1. Local Variables )
2. Global Variables Tnatl
Local Variables .and y‘ 1§
A variable is said to be a local variable if it is declared inside a function or inside ak That is
the scope of the local variable is within the function or block in which it was t.ieclar-ed. been co1
variable remains in memory until the execution of the function or block in Whlch it Rules
declared in completes. Let's see the following example: - ___,__]_._‘
main ( ) :
! 2.
Intexs
printf(“x = %d", x);
; 3!

In the above example , the variable x is a local variable with respect to the main functi
Variable x is not accessible outside main function and x remains in the memory until
execution of the main function completes.

Global Variables !

A variable is said to be a global variable if it is declared outside all the functions in
program. A global variable can be accessed throughout the program by any function. A gle
variable remains in the memory until the program terminates. In a multi-file program

global can be accessed in other files wherever the variable is declared with the storage
extern.

#include <stdio.h>
#include<conio.h>
int g =10;
void main ()
{
int x = 20;
clrser ();
printf("inside main, g = %d", g);
printf("\Inside main, x = %d", x);

{
int y = 30;

printf("\nlnside block, g = 9%d", g);
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printf("\nInside block, y = %d", y);
printf("\nInside block, x = %d", x);
}
printf("\nOutside block, g = %d", g);
\*printf("Outside block, y = %d", y); */
printf("\nOutside block, x = %d", x);
getch ();
}

In Fhe above e.xample, g is a global variable and x is a local variable with respect to main
and y is local variable within the block. The variable y cannot be accessed outside the block.

That is why the printf statement outside the block accessing the value of the variable y has
been commented out.

Rules for Naming a Variable in C

1. A variable name can have 1etters (both uppercase and lowercase letters), digits and
underscore only.

2. The first letter of a variable should be either a letter or an underscore However, it is
discouraged to start variable name with an underscore. It is because variable name
that starts with an underscore can conflict with system name and may cause error.

3. There is no rule on how long a variable can be. However, only the first 31 characters of
a variable are checked by the compliler. So, the first 31 letters of two vanables in a
program should be different. i LR

Constant

fixed values are also called literals.
& C Constants are also like normal variables. But, only difference is, their vai nes

be modified by the program once they are defined. :
4 Constants refer to fixed values. They are also called as literals

% Constants may be belonging to any of the data type.

< Syntax: , il
const data_type variable__ngme; it
(or) s
const data_type *variable munle,L s wol s
Types of C Constant g1 O g

1. Integer constants
2. Character constants

1. Interger Constu_“p_ ;ﬁm
1 ts



Vi e

ts
Integer constan is an integer.
. le number value is I : : int.
& Any v:hoei constant refers to a sequence of digits without a decimal point
< An integ

teger preceded by a unary minus may be considered to represent
« An inte

constant.
Example : 0 -33 32767 G Py
three types of integer constants namely, : .
T;erf):z;nal integer constant (c) Hexadecimal integer constant

(b) Octal integer constant

g

4
Decimal Integer constant (base 10)

It consists of any combinations of digits taken from the set 0 through 9, preced L
optional - or + sign. o

The first digit must be other than 0. 3
Embedded spaces, commas, and non-digit characters are not permitted between dig :

Valid : 0 32767 -9999 -23

Invalid :
12,245 —_ Illegal character (,)
102030 — [llegal character (blank space)
045 — First digit cannot be zero.

Octal Integer Constant (base 8)

% It consists of any combinations of digits taken from the set 0 through 7.
** If a constant contains two or more digits, the first digit must be 0.
* In programming, octal numbers are used.

Valid : 037 0 0435

Invalid :
0786 - Illegal digit 8
123 - Does not begin with zero
01.2 - Illegal character (.)

Hexadecimal integer constant (base 16)

% It consists of any combinations of digits taken from the set 0 through 7 and also 1
through f (either uppercase or lowercase).

% The letters a through f (or A through F) represent the decimal quantities 10 throug
respectively. g

** This constant must begin with either 0x or 0X. R

¢ In programming, hexadecimal numbers are used.

Valid Hexadecimal Integer Constant:  (x 0Xx1 0x7F. ok

Invaliq Hexadecimal Integer constant:

Oxefg - Illegal character'g_ .
123 - Does not begin with
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Unsigned integer constant : An unsigned integer constant specifies only positive
integer value. It is used only to count things. This constant can be identified by appending the
letter u or U to the end of the constant.

Valid: Ou 1U 65535u 0x233AU

Invalid: -123 - Only positive value

Example of integer :

#include<stdio.h>

#include<conio.h>

int main ()

{

const int a=1234;

clrser ();

printf (“Value of a= %d”, a);
getch();

return 0;

}

2. Character Constant : ‘
A character constant is a single character, enclosed in single quotation marks.
el ACB s i
Characters are stored internally in computer as coded set of binary digits, which

positive decimal integer equivalents. The value of a character constant is the numeric va!

the character in the machine’s character set. This means that the value of :
constants can vary from one machine to the next, depending on the character set
on the particular machine. For example, on ASCII machine the value of ‘A’ is
EBCDIC machine it is 193. - TIIURAR

Example of Character

#include<stdio.h>
#include<conio.h>

void main()

{

const char a=‘X’;

clrscr();

printf(“Value of a=%e, @’);
getch(); A

i e

290 M
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n of digits, letters, escaped seque

inatio -
t of any combina d the corresponding single charg

consis
may ant, ‘A! an

that a character const
re not equivalent.

& A string constant
and spaces. Note
string constant “A” a
‘A - Character constant -

“«A” 2 String Constant -

KA’
> and OV (NULL)
consists of character A and \0. However, & single character str

lent integer value. It occupies two bytes, one for th‘e AS
0, which is used to terminate

The string constant “A”
constant does not have an equiva _
code of A and another for the NULL character with a value

Stl’lngS- " " "24 Kaja Street“ 1
id Stri nstants : "W 100 , o
palid Sixing o the closing double quotes miss

Invalid String constants : "W ‘
Raja” the beginning double quotes missi

Rules for Constructing String Constants
1. A string constant may consist of any combination of digits, letters, escaped sequent
and spaces enclosed in double quotes.

2. Every string constant ends up with a NULL character which is automatically assign
(before the closing double quotation mark) by the compiler.

Symbolic Constant :

A symbolic constant is name that substitute for a sequence of character that cannot
changed. The character may represent a numeric constant, a character constant, or a stri
When the program is compiled, each occurrence of a symbolic constant is replaced by i
corresponding character sequence. They are usually defined at the beginning of the progra:
The symbolic constants may then appear later in the program in place of the nume
constants, character constants, etc., that the symbolic constants represent.

Fox example,

a C program consists of the following symbolic constant definitions.
#define Pl 3.141593

#define TRUE 1

#define FALSE 0

#define Pl 3.141593 defines a symbolic constant Pl whose value is 3.141593. When

program is preprocessed, all occurrences of the symboli ]
B oeproocniod, ymbolic constant Pl and replaced with t

Note that the preprocessor statements be
semicolon. By convention
Examples
#include<stdio.h>
#include<conio.h>
#define TRUE 1
#define Pl 3.141593

gin with a #symbol, and are not
» Preprocessor constants are written in UPPERCASE i
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void main ()

{
float a
float b;
float c;
float d=PI;
clrscr();
if (TRUE)
{
a=100;
b= a*10;
c=b-a
) :
printf("\na = %f\nb=%f\nc=96f\nP1=%f", q, b, c, d);
getch();
}
Arrays

When there is a need to use many variables, there is a big problem because we will
onflict with name of variables so that in this situation where we want to operate on many
umbers then we can use array. The number of variables also increases the .complexity of ﬂ}%
ogram so that we use Arrays.

Arrays are set of elements having same data type or we can say that Arrays are collectlon-.

tart from its index value and the index of array starts from 0 to n—1. ¥
Suppose we want to access 5th element of array then we will use 4th elerhb

Array is a container which can hold a fixed number of items :
hould be of the same type. Most of the data structures mak

oncept of Array :
% Element : Each item stored in an array is called ar
% Index : Each location of an element in an array
is used to identify the element. PO
rray Representation T

Arrays can be declared in various ways |
et's take C array declaration.
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Name Elements

i f

int array [10] = { 35, 33, 42, 10, 14, 19, 27, 44, 26, 31},

f f

Type Size
elements ks J{ 33 J{ 42 H 10 J[ 14 M 19}[2 e
index 0“1 27 3 4  SESSGEEE

|

Size : 10 ,,
As per the above illustration, following are the important points to
considered :
% Index starts with 0.
% Array length is 10 which means it can store 10 elements.
% Each element can be accessed via its index. For example, we can fe ch
element at index 0 as 9.
How to declare an array in C programming :
The general form of declaring a simple (one dimensional) array is
+array_ type variable_name [ array size];
in your C /C ++ program you can declare an array like
int Age [10]; _
Here array _ type declares base type of array which is the type of each element m! a)
In our example array _ type is int and it is name is Age. Size of the array is defined by ar
size i.e. 10. 3
We can access array elements by index, and first item in arr

of array is called lower bound and its always 0. Hi
bound.

In C programming language upper and lower bounds cannot be changed gliur;
execution of the program, so array length can be set only when the program in written.

I8

ay is at index 0. First e |
ghest element in array is called ug

I
2

AgeO | Agel | Age2 | Age3 Age4 | Ageb Age6 | Age7 Age
30 32 54 39 26 29 93 i

Array has 10 elements

Note : One good practice is to declare arras

will minimize the required work
development,
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 Considering the array we declare
ey }EV: MPLOYEEd la;mve we can declare it like
2. int Age [NUM _ EMPLOYEE];
How to initialize an array in C program :
Initialization of array is very simple in C
initialize arrays.
% Declare and initialize array in one statement.
% Declare and initialize array separately.

Look at the following C code which demonstrates the declaration and initialization of an
array.

programming. There are two ways you can

int Age [5] = {30, 22, 33, 44, 25}
int Age [5];
Age [0] = 30
Age [1] =22
Age [2] =33;
Age [3] =44;
Age [4] = 25;
Array can also be initialized in a way that array size is omitted, in such case compiler
automatically allocates memory to array.
int Age[ 1= {30, 22, 33, 44, 25},
Let’s write a simple program that uses arrays to print out number of employees having
salary more than 300C.
The various types of Array are provided by C as follows :
1. Single Dimensional Array
2. Two Dimensional Array
3. Three Dimensional array

1. Single Dimensional Array
A dimensional array is used for representing the elements of the array. For example,

int a[5];

The [] is used for dimensional or the sub-script of the array that is generally used for
declaring the elements of the array. For accessing the element from the array we can
subscript of the Array like this e
a [3]= 100; ‘

This will set the value of 4™ element of array

So there is only the single bracket, then it is called the Single
This is also called as the Single Dimensional Array
Syntax : data-type arr_name(array_size];

T
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Output :

Value of arr [0] is 10
value of arr [1] is 20
value of arr [2] is 30
value of arr [3] is 40
value of arr [4] is 50

2. Two Dimensional Array or the Matrix

The Two Dimensional array is used for representing the elements of the array in the from
or the rows and columns and these are used for representing the Matrix A. Two Dimensional
Array uses the two subscripts for declaring the elements of the Array

Like this int a [3] [3]

So this is the example of the Two Dimensional Array. In this first 3 represents the total
number of Rows and the second elements represents the total number of Columns. The total
number of elements are judged by multiplying the number of Rows * Number of Columns in
the Array in the above array. The total number of elements is 9.

% syntax : data-type array_ name[num of_rows][num_of columns]

rray declaration, initialization and accessing a
Array declaration syntax : Integer array example :

data_type arr_name [num_of_rows] [num_of_columns]; int arr[2][2];
Array initialization syntax : int arr [2][2]=4{{1, 2}, {3, 4} };
data_type arr_name[2][2]= {{0,0}, {0,1}, {1,0}, {1,1}};
Array accessing syntax : arr [0] [0]=1;
arr_name[index]; arr[0] [1] =

arr [1] [0]=3;

arr [1] [1] =

EXAMPLE PROGRAM FOR TWO DIMENSIONAL ARRAY IN C :

# include<stdio.h>

void main()

{
int i,j;
//declaring and Initializing array
int arr (2][2] = {10, 20, 30, 40};
/* Above array can be initialized as below also
arr [0][0]=10;//Initializing array
arr [0] [1] =20
arr [1] [0] =30
arr [1] [1] =40;*/

for (i=0;i<2;i++)

{










Q_ﬁj = Data Structure Using C

}

printf (“\n”);
}
getch();

Print :

Storing Values in a Continuous Location Using a Loop
The pointer syntax above assigns values to a particular location of an array, but if yo
want to store values in multiple locations automatically then you should use a loop.
Tere is an example using the for loop command:
?
# include<stuio.h>
# include<conio.h>
void main()
{
int i,j, k,x=1;
int arr [3] [3] [3] ;
clrser ()¢
printf (“:::3D Array Elements:::\n\n"");
for (i=0;i<3;i++)

{
\

for (j=0;j<3;j++)

/
!

for (k=0:k<3:k++)

{
1
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2. Compare 20 with 50
20 != 50, go to next element.
3. Compare 20 with 35
20 != 35, go to next element.
4. Compare 20 with 20
20==20, so 20 is found and its location is 4.

3. Insertion : It is used to add a new data item in the given collection of data items.

E.g.

We have linear array A as below :
15| 2% [C4 3 =LA
10 | 20 | 50 | 30 | 15

New element to be inserted is 100 and location for insertion is 3. So shift the elements

from 5th location to 3rd location downwards by 1 place. And then insert 100 at 3rd location. It

is shown below :

1 2 R < =4

10 200 )0 B0 30

1 2 3 4

10 20 50 30

1 2 3 4 5

10 20 50 50 30

1 2 3 4 5 | 5 ._
10 20 100 50 - 30 SRl

1

4. Deletion : It is used to delete an existing data item from the given collection of da

items.
E.g.

We have linear array A as below :

1

213 | 4

5

6

10

20 | 50 | 40

25

60

The element to be deleted is 50 which is at 3rd location. So shi

6th location upwards by 1 place. It is shown below :

ft the elements from 4th



After deletion the array will be :
1427530 4| F5HIG

10 | 20 | 40 | 25 | 60

~
"
t

M 3 ‘1" . - . .

5. Sorting : It is used to arrange the data ite?ns in some order i.e. in ascending or
descending order in case of numerical data and in dictionary order in case of alphanumeric
data. :

E. g

We have linear array A as below : : i B et
1 2 3 4 5 1 1 "o 20 SEM WO 1“('-.:-'-"3‘:,"-7:;
10 | 50 | 40 | 20 | 30 < .othie > ehuloni 3

< oo “(liﬂiJmi{-’Qw
After arranging the elements in increasing order by using a sorting techniqu ay

be :
j| I
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{

POS=P0OS-1;
int TEMP =N-1;
while (TEMP>=pQs)
{
a [TEMP+1)=a [TEMP];
TEMP=TEMP-1:
}
a[POS]=x;
}
void traverse (int *a, int n)
{
int START =0;
while (START <n)
{
printf(“%d\n”,a[START];
START=START+1;
}
}

Algorithms for array traversal, insertion and deletion are shown below
separately

ALGORITHM : (Traversing of Linear Array) Here Arr is a linear array with"lower
bound L and upper bound U :

1. [Initialize Counter] Set K=L AOITHIZHI

2. Repeat steps 3 and 4 while K<=U a0 1w

3. Print Arr [K]. e
mathoglA

:. [:Bn(fzease Counter] Set K=K+1. e \ : o o

ALGORITHM : (Inserting into a Linear Array) INSERT (Arr, N, K, I

Here Arr is a linear array with N elements, .K is pdsmiwim
ITEM is the element to be inserted. wob | '>-".uHo€; arr0 35
1. [Initialize Counter] Set I=N. !
2. Repeat steps 3 and 4 while I>=K.
3. Set Arr [I+1]=Arr [I].
4. [Decrease Counter] Set IBI*I.‘ __
5. [Inserting ITEM] Set =
6. [Reset Number of
7 i
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Here Arr is a linear array with N elements, K i itive i .
element is to be deleted. 4 16 posttive Integer Fuch that
. [Initialize Counter] Set I=K. ' .
2. Repeat steps 3 and 4 while I=N-1.
3. Arr [I]=Arr [I+1].

4. [Increase Counter] Set I=I+1.
5
6

=3

. [Reset Number of Elements]. Set N=N+1.
. Exit.

TRAVERSAL

! T.raversal means visiting each element of array exactly once. Processing of array}ﬁ
printing the contents or counting the no. of elements in array.

Algorithm
1. [Initialize Counter] Set k=LB.
2. Repeat steps 3 and 4 while k<=UB
3. [visit the element] apply process to a [k]
4. [increase Counter] Set k=k+1.
5. [end of step 2 loopl]
6 . exit.
Alternative Algorithm
1. Repeat for k=LB to UB 3. [end of loop]
2. Apply process to Alk] 4. exit

INSERTION

For inserting an element in 1-D array,

one has to shift elements one position down.

Algorithm
1. temp = number.
_ [scan the list for the position of new element]

2

3. repeat while temp>position//actua1 in array

4. [move the last element one position down]
& array[temp] = array [temp-1]
% temp=temp-1

[insert the element]

array [position =no]

[change no. of informations by 1]

. number = number +1

// number is the no. of elements already present in array.

© ® oo

. return _—
2iotl) g
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r

DELETION

L For deleting element in 1
" Algorithm

[initialization]
element=array [position//kee

[make copy of position]
temp=position

s | |
el
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-D array the elements have to be shifted position up.

P information of deleted element

[update the list, number represents no. of items in list]

repeat while temp<number—1 /number is no. of elements in array
% array [templ=array{temp+1]

% temp=temp+1;

7. [decrease the size of info list by one]

8. number=number-1;

9. exit

SEARCHING

Searching means finding an element in an array. It is of two kinds :
% Linear search

% binary search

Linear Search

1. repeat steps 2 and 3 while loc<number

2. if array[loc]=item [search for element in array]

3. print “element found at position loc”and exit
[end of if structure]

4. set loc=loc +1
[end of step 1 loop]

5. if loc>=number

6. display“element not found”

7. exit

Binary Search in One dimensional array o
In binary search we take a sorted array. In binary search we s pl

compare with the middle element.

Algorithm i

1. set beg =LB, end=UB and mid=int ((beg+end ;

2. repeat steps 3 and 4 while beg <=end and a

3. ifitem <-a.[m-id]--.then | rrranned
set end =mid-1

else A i.iiﬁ%

bR e
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set beg = mid-1
[end of if structure]
4. set mid =int ((beg+end)/2)
[end of step 2 loop]
5. if a [mid] =item then
set loc=mid
[end of if structure]
6. exit
SORTING-Algorithm for Bubble Sort

1. repeat steps 2 and 3 for k=1 to n—1

2. set ptr=1 [initialize pass pointer ptr]

3. repeat while ptr <= n—k [executes pass]
if data [ptr] > data [ptr +1]
interchange data [ptr] and data [ptr+1]
b) set ptr= ptr+1
[end of inner loop]

[end of step 1 outer loop]

4. Exit

Applications of Arrays in C

In C programming language, arrays are used in wide range of applications. Few of tk
are as follows : &

1. Arrays are used to store List of values.

2. In C programming language, single dimensional arrays are used to store list of valt

of same data type. In other words, single dimensional arrays are used to store a row
values. In single dimensional array data is stored in linear form.

3. Arrays are used to perform Matrix Operations,

4. Weuse two dimensional arrays to create matrix. We can perform various operati u -.
matrices using two dimensional arrays. ikl 4

5. Arrays are used to implement Search Algorithms. o
: 6. We use single dimensional arrays to implement search algoﬂtliiﬁs like :wiq : ’
_ 1. Linear Search 2. Binary Search
! 7. Arrays are used to implement Sorting Algorithms,.
- 8. We use single dimensional arrays to implement sorting algorithms
;. ;ns;;:io; Sort 4. Quick Sort
2. Bubble Sort .
3. Selection Sort : Metgf St etc 3
. 9. Arrays are used to implement Data structures 4 y! r; ’ ~.J i
10. We use single dimensional arrays to implem'en't dat;usu }
1. Stack Using Arrays :

2. 1
11. Arrays are also used to implement CPU Scheduﬁze?ﬁw

f
L5
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# include<stdio.h> Powg

# include <stdlib.h>
int a [20], b [20],c [40];
int m.n,p,val,i,j,key,pos, temp;
/*Function Prototype*/
void create();

void display();

void insert();

void del();

void search();

void merge();

void sort();

int main()

{

int choice;
do
{
printf(“\n\n.....Menu.....\n");
printf(“1. Create\n");
printf(“2. Display\n");
printf(“3. Insert\n”);
printf(“4. Delete\n”); 7
rintf(“5. Search\n”); ; L
ﬁrintf[“ﬁ. Sort\n”); ;'f “‘3“:’:{"1& “m ‘3’“_
printf(“7. Merge\n”);
printf(“8. Exitwn”); it
PRSI )

scanf(“‘%d
switch (
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break;
case 5:
search();
break;
case 6:
sort ();
break ;
case 7:
merge();
break;
case 8:
exit(0);
break;
default: pr
printf(‘“\nlnvalid choice:\n"); i
break; 5
} 1i7
}while (choice!=8); '
return0;
} 54 |
void create()//creating an array i '
{

printf(“\nEnter the size of the array elements :\t");
scanf('%d”,&n);
printf(“\nEnter the elements for the array:\n");
for (i=0;i<n;i++) ! _
{ RER L. |
scanf(“%d",&ali]); ) ; A

}

}/end of create()

void display()/displaying an array elements

’

int i;
printf(“\n The array elements are : \n");
(i=0;i<n;i++)

printf(“%d\t” a[i]);



: Basic Concepts l-t? l
{ g

printf(“\nEnter the position for
scanf (“%d”,&pos);
printf(*\n Enter the element to be jnge

rted :\t”
scanf (“%d ”,&val); :
for (i=n-1;i>=pos;i- -)

{

the new element:‘\t"];

a[i+1]=al[i];
}
a[pos]=val;
n=n+1;
}//end of insert()
void del() //deleting an array element

{

printf(“\n Enter the position of the element to be deleted:\t”);
scanf (“%d”,& pos);
val=a[pos];
for(i=pos;i<n-1;i++)
{ P !
afi]=ali+1]; s och) 161

} ;

n=n-1;

printf(“\n The deleted element is —%d ’,val),
}//end of delete() PP L G R
void search() //searching an array element
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Sred & fou &M ¥ fomn s 21 39 A node I = = W Insert f&ar
(a) list & 09 |
(b) list & 31 |
(c) foreft list & w1 (3ft9)
3. Deletion operation : 7€ operation linked list # T fHHt node #1 delete
¥ foTn ST 21 Node i 5 @091 @ delete fFam S 2 &% 1 8—
(a) list & YO 91 :
(b) list % 31 H| ‘
| (c) foRdll list & weq (affer) ey
4. Traversing : 7% 9fha1 fHt linked list 1 T Point ¥ g Point T val
FEM &k FH AT R R e node ¥ MG node ' AR Traversing | _
Forward Traversing et 2l : R A
8. Concatenation : 7% W41 g8 list § node FI g % FM 31 21 A T8 list
- B % @ concatenation node ¥ m + n node BRI SO

6. Display : 98 node &% node Fi A1 1 Point A % ¥AM § 3771 21 &4
Part #I print % & Display operation F&eal 21

v

Types of linked list
Linked list §%9 ®9 & 91 Y&R &1 &1t §—
1. Single linked list 3. Circular linked list
2. Doubly linked list 4. Circular Doubly linked list

1. Single linked list : Single linked list T% ¥ linked list ¥t & fd @R
TH-GR F T 50 H 2 8 T T T linear linked list  #ed #1 593 s wey 78 2 fr
& T At node T Access e ST Hohdl # T TF IR Pointer % 31 91 % % D T node
Access &l foha1 <1 Tehar 21 | £ Ssing. :

START Nl

40
Single Linked List
2. Doubly linked list : Doubly linked list &8

% |9 multiple link % /T I8 &1 %ﬁ‘ T 3
idiceoss il 0 S 8\ SRR




3. Circular linkeqd list
TEAT 3 AT T B R u g

| Lists m @J
: Cu-cular linkeq list

: ; ingle linkeq 1; i linked 1list ® foas
list % last node ® ligt % first node = Add‘::‘*w nod%e ¥ atfem node F S firgy sy 3 jj
8 ST ) :

| Circular Linked List
4. Circular doubly linked list : =g TF list &t & fors | Poi
Successor Pointer (2) Pre-decessor Pointer ¢

ircle shape % 213
START

ue 2. Single linked list R -3l 3 Operations perform f63 s &2

IT— Operations on linked list
Create an Empty linked list :

[. U% node Pointer head sH/™1 &M 5 o value #! initialize i f&a T 21 o8
Pointer list % First element #1 Point 33 % U use ¥ foran i 21 |
II. 9%37d | list Empty & 37d: Head Pointer %1 NULL & Initialize ﬁm r:rrj@t :
11l 7€ Wefd[ a1 € & list empty 2l | " TRare]

Display list : List @I Y& g last nQd::ﬂ-{ ETJOTT‘Z‘;WW
(Head) Pointer @1 STagaehal Brdl 2 |4 E’?‘FF = mp a,!;y Jink
% last node @& AT 2| List 1 last node € node fors 5 dinj

struct node pointer'aﬁ eI alﬂ
9% T% Next Node W ST aﬂ?

Insertion in linked list

& it element I lis
Free node =1 fean <man
T node 1 THHI SIS
1. List % Beg
2. List® E




= Data Structure Using C

inning : el ot element ! list % first # Add F1 ¥ f

1. Insertion at the Be #1 afz list Empty ® @ 741 node & list &1

qd list empty & 1 T& 3d check m%m
g 38« fore 91 Steps @l perform HT—

1. New Node FAEAT . -
2. New Node ¥ information field # Data value enter &7

3 New Node ¥ linked field ¥ NULL value insert &t1|
4. list 1 Pointer head 39 7@ node %I Point &I '
IfZ list Empty 781 € A 7 node 1 list % HaI8 31 add < 591 S&m 9% fau fr= ep
follow FT1— | ‘
1. New node SHRT|
2. New node % Information Part ¥ Data Value enter & -
3. New node % Link Part ¥ Head (list Pointer) Sl % list % First Item &1 point &
Address g 9
4. 379 Head New Node 1 Point |

New node

After Insertion
Algorithn (Inserting a Node at the Beginning) :
Insert - First [START, ITEM]
1. [Check for overflow?)
if PTR=NULL, then
i Print overflow
. Exit |

R = (Node *) malloc (Size of (node))
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2. Insertion at the en
Faq e list empty & =7
First node 9 &1 3R list

1. New node g3

2. New node &t Information field ¥ Datq value insert i
3. New node % Link Part & NULL =re, |
4. 319 Head Pointer New node point &)

g list empty & & qt list =1 traverse Y |agt element

F! insert X feam SR, ESsED fau e Steps # follow L —
1. New Node s11| ‘

ol : : s & T TR 'ListSl
Tl condition 1:: fn ;:;n%ent ) list % end ¥ insert e aa
T Last node it T 31 g SL;T;I}B ::figw Node l.i*“’f *‘

TEA SR AR last § T node

2. New Node #i Information Part/field ¥ Data value insert #¥1

3. New Node % link field ¥ NULL =i %
4. 39 Head Pointer % 3{&&1 U% T4 Pointer 1 STTFh1 B S list ¥ last node % ST
5. List % last node % link field & T Node Address St “ Ll (L
Algorithm (Insert a node at the end) : : 2 | m ; Wi ; e

Step 1 : [Check for overflow]

I5 FFE
if PTR =NIJEI} thel_l I P EE LU vemio virvoqaie T -
Print overflow : . 15 15
Exit. . - i . el BE Telaio® o ' o

else iod g

£ bloit snil _,ige on ¥
PTR = (Node *) malloc ( |
end if.

Step 2 : Set PTR — info = Item

Step 3 : Set PTR — Next = NULL
Step 4 : if START = NULL
Step 5 : Set LOC = Start

Step 6 : Repeat Step 7 uni
Step 7 : Set LOC =
Step 8 : Set LOC = ne:

size of (n
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- TS

New Node .
STARTI .
20 3 N « N 50 R

After Insertion
3. Insertion at the Specified Position—3af¢ 94 node # fedl fd ™ element |
insert FT & Al Tl T&a 39 location 1 Find out f&a S0 51l node %1 Add 31 € i
A2 list § 74 node #1 Add X f&a S| 9% feu f1 Steps #1 perform #Td &—
1. New node 91|
2. New Node ! information field/part ¥ Data Value insert &7

3. T% Temporary Pointer &1 5l list % 39 element &1 Point &4 for&® a8 741 node
FE R A

4. Temporary Pointer NULL T Y€ 911 € 37: list ® item 721 € f59% 912 79 Node F 4

Exe i
5. A< temporary Pointer 38 item I 3¢ o € @ fe Steps 1 follow FHIH—
I. 74 node ¥ link field & temporary Pointer & link part F T 27|

II. Temporary Pointer F link field § New Node &I e[|
Example :

I START l

o SIS 2 S

After Insertion

Delete operation on a Singly linked list :

forgt 4t element % list § Delete F73 ¥ feTU T9® 9ee Pointer #1 Properly set !
A% H 39 Momory #! Free &% {21 w1 & i node 8 use ¥ faan =1 @1 am List
Delete foran 51 a1 2— ‘

St
St
St
St

Delef

N POL Y N



: Li
2. List % End 5

3. List % forft firgy T Location H)

1. Delete an Element from the beginning of list
4 list & first element =7 Dele

4 Assign %% feam s
[IL. 51 Memory ptr zwy Point %} w1 w5 3 T Deallocate #7 fean s
Algorithm to Delete an Element from Beginning :

Step 1. [Check for underflow]

if START = NULL, then
Print (linked list Empty)
Exit

end if

Step 2. Set PTR = START
Step 3. Set START = START — next
Step 4. Print Element Deleted is, Ptr — info

-

Delete from the end of the list ' :

faft st element 1 list % end ¥ Delete FH % fog Tﬁ?ﬁ%ﬂ%ﬁ s‘?ﬂﬂ?dm::t
TF traverse fHa1 S 39 a2 last element I Delete , 1 = Steps 1 follo

af% Head NULL # @ list # %1€ Data item T&l € 37: &l Data itex
T& temporary Pointer & fSH head #i value &1 As

. 4z Head %1 link Part NULL ® ﬁs;frgq
. 28 Delete ¥4 % a1 head ® NULL Assi

Step 5. free (ptr).
Example :

b ',‘ b 30
After Deletion

- ‘,’. 4
x i

B qsf 3

rat siajel]
gl 2

ite
4




L_/ ik | .j-
afe T Tsh @ SR é HAd qﬁa deh 3|a‘i| 34“ Ush Pointer last Node
5 llSt i items ] : N-[ILL 0 ..

. : A
& Node ®! Point HTM : e
6. II™ last node ¥ link Part # NULL Value assign

i & 2T
7. 9% Pointer F last Node &1 Point Y T8 91 39 free

Delete an Element from Specified Poisition

¥4 et feF T Element % R ATt element FT Delete FAT B HIY Yge location 4
out f&a1 s foms & 9 Element #1 Delete %1 2 773 1T f7 steps %1 follow #Ta |

Step 1:
Step 2 :

Step 3 :

Step 4 :

Step 5 :
Step 6 :

Step 7:

Step 8 :

s Ifg temp1 98eA node # qg head # next node T & i3} (head = head

£ ?-Tﬁ.'templ last node & qq temp2 — npext — NULL si Delete templ. 4

By

After Deletion A ¢

H99 T8 check H fF list empty 2 f& T8
e T2 (list) empty 8 q Iz message f@TE 2 13 list w@raf 2 3N deletion 7
THdll 3 Function &% S &

3R IR list @reft 78 2 @ tepm1 v temp 2 3 Pointer node @ ¥ 3ilt temp1 lis
Head &1 assign F 29 § e
Wtemp%aﬁaﬂ:ﬁﬁmﬁmﬁ%aaﬁﬁw@#wmde 1 firet s 27
node 7 Sied 91 temp 2 = templ set FT tem 1 me
ey p P p1 FI 37T &7 !
A move FA-FT last node T 989 I 2 df a9 “fe@n T node 1ist T 98 2
Deletion izgsg; TR 3 Message %\rﬁ@'!'sF & stk Function %% 3
I move FA-F1d 3G node W 989 Sq Del .
% list ¥ F907 @ & node 2 ZTF:%TI SR T ohecs il :

ﬁnodeﬁ%ﬁﬁ@ﬁnodeéﬂ}ﬂmdeﬁdelt H 3R head — 3
2 3k templ FI Delete 3 A ete ead = NULL set

IS list § T OR nodes & dt check Fq & f& templ list & 98T node 2 g5 tetg .
head set 1 2 &

Di;

e

In
Delete temp1. t

A temp1 T6ET node T8 C|

FE A last node d T3 2 list 1 (t;a g
15 pd
NULL)| np iy Nog

. Stt't
Ife templ, First node 78 # 3ijy 1 & last no

de, T temp2 — =temp] -
set FT 3R templ F delete F 4 g te 2
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START

B o B

After Deletion

%¥4 3. Linked list & Advantages 3k Disadvantages ® gz
3™{—Linked list % Advantages v Disadvantages f= w&#r #—
Advantages of linked list

Linked list % & 19 (advantages) ¥ 37 & F9 = §—

1. Dynamic Data Structure : Stack 3iit Queue 1 declare Fd TTT 3TH! size define
FTT TS T linked list ST T23 T H2m A1 AR S G B
2. Efficient Memory utilization : Sl 95 limited &1l @ 371 utilization efficient & il
=T It 6 FHR computer § Memory limited 21t & FTHH efficient use B Tgd wEd
| Linked list ¥ Declaration % 9 S size fe=n <1 & 38 weran a1 s o1 9t 21 f
Data Element &1 Sa17 7 {31 51 € 39 element #1 linked list & remove T a1 ST 2
aif a9 T Memory &1 fg R &m ¥ foran <1 g1
3. Insertion & Deletion are easier and efficient : Stack ¥ Inserti_on 3R Dele_ctiOnQEF
#R F (Top) ¥ Sequence ¥ & fHa1 a1 81 el Queue H Insertion_ (Front end) 3R
Deletion (Rear End) & fa1 51 €, i @ &1 S linked list & Insertion 311'( Deletion
foreft +ff sTTe | febe ST Wl © AEd & STEH H o
4, é}:ﬁ; 37eATan 9gd &l e (Complex) Applications F TEE hnkedh’stai L
| S < i

Lol 46 4108

Disadvantages of linked list : ) o
1. More Memory : 37X linked list # number ofnodas@'ﬂl@

#1 store B % AT 9gd A1 Memory Edl W q?]ﬂ'l'i’-‘la ib

2. 97 linked list  node SAG1 & A ¥7 ¥ feh¥il node i se

Introduction to Linked Lists

Linked List is a very commor
Nodes in a sequence.

Each node holds its own da
Structure, :

Linked Lists are use

:‘r;g}b{iﬁg
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HEADER u

T A S S S

Data | ADDR | mmm» | Data | ADDR

% O
T e R T N

| Data ADDR

Bt arasp e

A linked list is a sequence of data structures, which are connectc.ad togeth(-::r via li
Linked List is a sequence of links which contains items. Each link contains a co i
to another link. Linked list is the second most-usecj data §tructure after array. Following
the important terms to understand the concept of linked list.

# Link - Each link of a linked list can store a data called an element.
< Next - Each link of a linked list contains a link to the next link called Next.
# Linked List - A Linked List contains the connection link to the first link called

Linked List Representation

Linked list can be visualized as a chain of nodes, where every node points to the n

i
node. '
5 SSETESER e W
| : ) Next?E
: .i Data items 1 ~ H
Ll f (O H—
| | S e o el

As per the above illustration, following are the important points to be considered :
% Linked List contains a link element called first.
% Each link carries a data field(s) and a link field called next.
% Each link is linked with its next link using its next link.
% Last link carries a link as null to mark the end of the list.

Advantages of Linked Lists

% They are dynamic in nature which allocates the memory when required.
% Insertion and deletion opertions can be easily implemented.

% Stacks and queues can be easily executed.

% Linked List reduces the access time.

lisadvantages of Linked Lists

% The memory is wasted as pointers require extra memory for storage.
% No element can be accessed randomly; it has to access
% Reverse Traversing is difficult in linked list,

oth

its

twa
ﬁeh

lications of Linked Lists
pplications of Linked List data structure

| There are various applications of doubly linked list in the real world. Some
“listed as : : G 8

% Linked Lists can be used to implement Stacks, Queues.



,» Where multiple applicationg
% All the running g

time slot to all for

Pt in a circular linked list and the OS gives a fixed
until all the appli

running. The operating System keeps on iterating over the linked list
cations are completed.

used when the quantity of data is not known prior to execution.
ypes of Linked Lists

1. Singly linked list
2. Doubly linked list
3. Circular linked list
4. Circular doubly linked list _ ofdadion
Simply a list is a sequence of data, and linkefl listfis;la sequence of data linked W1&th,‘each‘
ther. the formal definition of a single linked list is as fo owrs : g S
Single linked list is a sequence of elements in which every elemel}thas link ;;;:;;_;fg?; Gl
S t element in the sequence. ; e voniiae de Griraaie
| l;ex : ingle linked list, the individual element is caﬂefi as “No.df-;’. E;g;y'a:N“&@
0 fl‘:egligg iiatga and next. The data field is used to store actual Valueo j8 a0k
ld is us:ad to store the address of the next node in the sequence. i I8

Note : JU

% In a single linke
known as “front’

-‘ <% Always ne:_rt
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Example :
Node Address
> 1001 1004 1005 s
r} ol 1004 bt 1008 1012
*front :
1001
Operations
In a single linked list we perform the following operations :
1. Insertion 3. Display
2. Deletion

Before we implement actual operations, first we need to set up empty list. First per
the following steps before implementing actual operations :
< Step 1 : Include all the header files which are used in the program.
» Step 2 : Declare all the user defined functions.
Step 3 : Define a Node structure with two members data and next.
Step 4 : Define a Node Pointer ‘head’ and set it to NULL.

Step 5 : Implement the main method by displaying operations menu and n
suitable function calls in the main method to perform user selected operation.

5

L) )
"

e

o

Insertion

In a single linked list, the insertion operation can be performed in three ways. They. ar
follows :

1. Inserting at Beginning of the list
2. Inserting at End of the list
3. Inserting at Specific location in the list

Inserting at Beginning of the list
We can use the following steps to insert a new node at beginning of the single linked |
% Step 1: Create a newNode with given value. 3
% Step 2 : Chek whether list is Empty (head = = NULL) :
% Step 3 :If it is Empty, then set newNode—next = NULL and head = new Y
% Step4:Ifitis Not Empty, then set newNode—next=head and head =n
Inserting at End of the list
We can use the following steps to insert a new node at end of the single link
% Step 1: Create a newNode with given value and newNode — next as.
‘:* Step 2 : Check whether list is Empty (head = = NULL).
% Step 3 :If it is Empty, then set head = newNode.
% Step4:Ifitis Not Empty, then define a node pointer temp and initi

% Step 5 : Keep moving the temp to its next node until it reaches to t
list (until temp — next is equal to NULL).
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& Step 6 : Set temp — next = newNode.
rting at Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the single linked list :

% Step 1: Create a newNode with given value.

& Step 2 : Check whether list is Empty (head = = NULL)

< Step 3 : If it is Empty then, set newNode — next = NULL and head = newNode.
% Step4:Ifitis Not Empty, then define a node pointer temp and initialize with head.

o,
°we

Step5: Kegp moving the temp to its next node until it reaches to the node after which

we want to insert the newNode (until temp — data is equal to location, here location

is the node value after which we want to insert the newNode).

% Step 6 : Every time check whether temp is reached to last node or not. Ifit is reached to

last 1_10d6, then display ‘Given node is not found in the list!!! Insertion not

possible!!!’” and terminate the function. Otherwise move the temp to next node.

¢ Step 7 : Finally, set 'newNode — next = temp — next' und 'temp — next =
newNode'.

eletion

In a single linked list, the deletion operation can be performed in three ways. They are as
ollows :
1. Deleting from Beginning of the list 3. Deleting a Specific Node
2. Deleting from End of the list

Deleting from Beginning of the list

We can use the following steps to delete a node from beginning of the single linked list :
% Step 1 : Check whether list is Empty (head == NULL).
Step 2 : If it is Empty, then dispay ‘List is Empty!!! Deletion is not possible’ and
terminate the funtion.
Step 3 :Ifitis Not Empty, then define a Node pointer ‘temp’ and initialize with head.
Step 4 : Check whether list is having only one node (temp — next = = NULL)

Step 5 : If it is TRUE, then set head = NULL and delete temp (Setting Empty list
conditions).

* Step 6 : If it is FALSE, then set head = temp — next, and delete temp.

Deleting from End of the list
We can use the following steps to delete a node from end of the single linked list :

“ Step 1 : Check whether list is Empty (head = = NULL)

% Step 2 : If it is Empty, then display List is ‘Empty!!! Deletion is not possible’ and
terminate the function.

% Step 3 : If it is Not Empty, then define two node pointers ‘templ’ and ‘temp2’ and
Initialize ‘temp1’ with head.

“ Step 4 : Chech whether list has only one Node (templ — next = = NULL)

% Step 5: If it is TRUE, then set head = NULL and delete temp1. And terminate the
function (Setting Empty list condition).

£

&
o

*, 9, -
e e o

.‘l‘
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and move templ to its

2 = templ’ . __
. . 1f it is FALSE, then set ‘temp : O antihie '
i fsttep (: t}iffa 1staI:ne until it reaches to the last node in the list. ( Pl
epea
NULL). et
& Step 7 : Finally, set temp2 — next = NULL and delete temp zl
i ifi the list 4
Deleting a Specific Node from . . .
We gan use the following steps to delete a specific node from the single
4 Step 1 : Check whether list is Empty (head == NULL). ?

& Step 2 : If it is Empty, then display ‘List is Empty!!! Deletion is not pos;

terminate the function.
& Step 3 : If it is Not Empty, then define two Node pointers ‘templ”
initialize ‘templ’ with head. e
% Step 4 : Keep moving the temp1 until it reaches to the exact node to be deleted
last node. And every time set ‘temp2 = temp1’ before moving the ‘temp1’ te

node. :
% Step 5 : If it is reached to the last node, then display ‘Given node not foun

list! Deletion not possible!!!". And terminate the function. i
% Step 6 : If it is reached to the exact node which we want to delete, then check w
list is having only one node or not. b
Step 7 : If list has only one node and that is the node to be deleted, then x
NULL and delete templ1 (free(templ)). 3
Step 8 : If list contains multiple nodes, then check whether templ is the ﬁrstf
the 11st (templ = head). Y il

Step 9 : If templ is the first node, then move the head to the next node (head =
— next) and delete templ. '

1i
us

07
e

-
0.0

*,
”6t

% Step 10: If templ is not first node then check whether it is last nod
th
— next == NULL) e in the llét (te
% Step 11 : If templ is last node then set temp2 — next = NULL ,
(free(templ)). and delete ter Op

@

Step 12 : If templ is not first node and not last node, then |
’ ¢ .
. — next and delete temp 1 (free(temp 1)). eriempAongaa
Playing a Single Linked List
? can use the following steps to display the elements of a single linked list -
Step 1 : Check whether list is Empty (head == NULL) .
: - Step 2: If it is Empty, then display ‘List is Empty!!?
o gep 3:Ifit is Not Empty, then define a Node Pointer
4@1 Step 4 : Keep displaying t
- lastnode.
. < Step 5 : Finally display temp — data with arrow pointing to NULL (tem

InSl

and terminate the fi | g,s‘-'f toge
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poubly linked list :
[n a single linked list, every node has_link to its next node in the sequence. So, we can
wverse from one node to other node only in one direction and we can not traverse back. We
tl;;‘ :] ve this kind of problem by using double linked list. Double linked list can be defined as
can =
follows :

Double linked list is a sequence of elements in which every element has links to
its previous element and next element in the sequence.

In double linked list, every node has link to its previous node and next node. So, we can
graverse forward by using next field and can traverse backward by using previous field. Every
node in a double linked list contains three fields and they are shown in the following figure :

Node
Link1 Link2
Points to previous node 4-) v e &b Points to next node

Value of that node

Here, ‘link1’ field is used to store the address of the previous node in the sequence,
link?’ field is used to store the address of the next node in the sequence and ‘data’ field is
used to store the actual value of that node.

Example :
Front

% D] o [ 2o B e - B 55

NOTE :
“ In double linked list, the first node must be always pointed by head.
“ Always the previous field of the first node must be NULL.

T Operations :
In'a double linked list, we perform the following operations :
. 1 Insertjon 38 Dlsplay

2. Deletion

Inserting a node in singly Linked List
A Doubly Linked List (DLL) contains an extra pointer, typically called previous pointer,
: together with next pointer and data which are there in singly linked list.

Inserting at beginning of the list
Inserting at End of the list
Inserting at Specific location in the list

o DN =
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Inserting at Beginning of the list e
We can use the following steps to insert a new node at beginning of the dou

< Step 1 : Create a newNode with given value and newNode — previ

% Step 2 : Check whether list is Empty (head ==NULL). :

< Step 3 : If it is Empty, then assign NULL to newNode — next and
head. :

% Step 4 : If it is not Empty, then assign head to newNode — next and
head.

Inserting at End of the list _
We can use the following steps to insert a new node at end of the double link
% Step 1 : Create a newNode with given value and newNode — next as
% Step 2 : Check whether list is Empty (head = = NULL).

+%

* Step 3:If it is Empty, then assign NULL to newNode — previous and n
head. :
Step 4 :If it is not Empty, then define a node pointer temp and initialize wi
Step 5 : Keep moving the temp to its next node until it reaches to the las
list (until temp — next is equal to NULL). o

% Step 6 : Assign newNode to temp — next and temp to newNode — previou
Inserting at Specific location in the list (After a Node)

We can use the following steps to insert a new node after a node in the double li
% Step 1 : Create a newNode with given value.

< Step 2 : Check whether list is Empty (head = = NULL).

* Step 3 : If it is Empty, then assign NULL to newNode — previous & new od
next and newNode to head.
% Step 4 : If it is not Empty, then define two node pointers templ & temp2 a
initialize templ with head. _
% Step 5 : Keep moving the templ1 to its next node until it reaches to the node after wh
we want to insert the newNode (until temp1 — data is equal to location, here lo
is the node value after which we want to insert the newNode). &
% Step 6 : Every time check whether templ1 is reached to the last node. If it is reacl ;.’-i'r
the last node, then display ‘Given node is not found in the list!!! Insertio

possible!!’” and terminate the function. Otherwise move the templ to next nc
% Step 7 : Assign templ — next to temp2, newNode to templ — next,
newNode — previous, temp2 to newNode — next and newNode to
previous. '

e »
0.0 ¢

=

~ Deletion
' In a double linked list, the deletion operation can be performed in three ways as
- 1. Deleting from Beginning of the list
2. Deleting from End of the list
Deleting a Specific Node

pe
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% Step 7 : Assign NULL to temp — previous — next and delete temp

leting a Specific Node from the list
We can use the following steps to delete a specific node from the double llnked list :

Lists m @

eleting from Beginning of the list
" We can use the following steps to delete a node from beginning of the double linked list :

Step 1 : Check whether list is Empty (head ==NULL).

Step 2 : If it is Empty, then display ‘List is Empty!!! Deletion is not possible’ and
terminate the function.

Step 3 : Ifitis not Empty, then, define a Node pointer ‘temp’ and initialize with head.
Step 4 : Check whether list is having only one node (temp — previous is equal to
temp — next).

Step 5 : If it is TRUE, then set head to NULL and delete temp (Setting Empty list
conditions).

Step 6 : If it is FALSE, then assign temp — next to head, NULL to head — previous
and delete temp.

" leting from End of the list
- We can use the following steps to delete a node from end of the double linked list :

Step 1 : Check whether list is Empty (head = = NULL).

Step 2 : If it is Empty, then display ‘List is Empty!!! Deletion is not possible’ and
terminate the function.

Step 3 : Ifit is not Empty, then define a Node pointer ‘temp’ and initialize with head.

Step 4 : Check whether list has only one Node (temp — previous and temp — next
both are NULL).

Step 5 : If it is TRUE, then assign NULL to head and delete temp. And terminate
from the function. (Setting Empty list condition).

Step 6 : If it is FALSE, then keep moving temp unit it reaches to the last node in the
list. (until temp — next is equal to NULL).

Step 1 : Check whether list is Empty (head == NULL).
Step 2 : If it is Empty, then display ‘List is Empty!!! Deletion is not possible’ and
terminate the function.

Step 3 : If it is not Empty, then define a Node pointer ‘temp’ and initialize with head.
Step 4 : Keep moving the temp until it reaches to the exact node to be deleted or to the
last node. ok Aok
Step 5 : If it is reached to the last node, then display ‘Given node not found in the
list! Deletion not possible!!!” and terminate the function. :
Step 6 : If it is reached to the exact node which we want to delete, then chee
list is having only one node or not. :
Step 7 : If list has only one node and that is the node which is to be&de‘i
head to NULL and delete temp (free(temp)). -
Step 8 : If list contains multiple nodes, then check whether temp is is
list (temp = = head).
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t node, then move the head to the next n;;de ((11:1 d
Su: to I\EIULL (head — previous = NULL) an

& Step9:Iftempis the fir |
then check whether it is the last node

et head of previo
;::;)if) . If temp is not the first node,
(temp — next == NULL} )-t i
& Step 11 : If temp is the last node,
—S-> pl:-evious _, next = NULL) and delet e e
4 Step 12 :If temp is not the first node and not the las i) m, on e
of next to temp of next (temp — previous — next = 'e g_ s -,—) pm
previous to temp of previous (temp — next — previous = :

delete temp (free(temp)).

hen set temp of previous of next to NUL
e temp (free(temp)). o

i ing a Double Linked List Ay
D's,\,?\l:aycar? use the following steps to display the elements of a double linked list : .si.:
% Step 1 : Check whether list is Empty (head == NULL). a

% Step 2:If it is Empty, then display ‘List is Empty!!"” and terminate the

% Step3:Ifitis not Empty, then define a Node pointer ‘temp’ and initialize withl

% Step 4 : Display ‘NULL’. .

% Step 5 : Keep displaying temp — data with an arrow (<===>) until temp r.

the last node.

Step 6: Finally, display temp — data with arrow pointing to NULL (temp —da
NULL). .

o

Applications/Uses of Doubly Linked List in Real Life

There are various applications of doubly linked list in the real world. Some of them ca
listed as : :

% Doubly linked list can be used in navigation systems where both front and b
navigation is required.

% It is used by browsers to implement backward
pages i.e. back and forward button.

% It is also used by various applications to implement Undo and Redo functio‘nal'i:‘
Circular link list : ‘4

and forword navigation of visited_-,;

In single linked list, every node points to its next node in the Sequence and the la"

points NULL. But in circular linked list, ever i i
! ¥ node points to itg ' qu
but the last node points to the first node in the list. P made Gl

That means circular

. linked list is simi
Points to the first node i similar

S to the single linked list except that the last
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Example :
*head Node address W

1001
001 o 1004 1008 1012

b T 1004|—JEEM 1008 1012] 1001}

In a circular linked list, we perform the following operations :

1. Insertion 3. Display
2. Deletion

Before we implement actual operations, first we need to set up empty list. First perform
the following steps before implementing actual operations.

% Step 1 : Include all the header files which are used in the program.
Step 2 : Declare all the user defined functions.

Step 3 : Define a Node structure with two members data and next.
Step 4 : Define a Node pointer ‘head’ and set it to NULL.

Step 5 : Implement the main method by displaying operations menu and make
suitable function calls in the main method to perform user selected operation.

Insertion

! .

> *, -
L0 %Wt e

%e

*

In a circular linked list, the insertion operation can be performed in three ways. They are
as follows :

1. Inserting at Beginning of the list
2. Inserting at End of the list

3. Inserting at Specific location in the list

Inserting at beginning of the list
We can use the following steps to insert a new node at beginning of the circular linked list :
“ Step 1: Create a newNode with given value.
“ Step 2 : Check whether list is Empty (head == NULL).
“ Step 3 : If it is Empty, then set head = newNode and newNode — next = head.
“ Step 4 : If it is Not Empty, then define a Node Pointer ‘temp’ and initialize with

‘head’. 24& <
“ Step 5 : Keep moving the ‘temp’ to its next node until it reaches to the Iast nodq:{unhl
‘temp — next = = head’). T
“ Step 6 : Set ‘newNode — next = head’, ‘head = newNode’ and ‘telgméﬁ ne:
head’.
|nsertmg at End of the list : 5‘

We can use the following steps to insert a new node at end of the{eimlilur‘
Step 1 : Create a newNode with given value.

Step 2 : Check whether list is Empty (head = =NULL).
* Step 3 : If it is Empty, then set hea@ =newNode and g?,ﬁ
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i d initialize w
fine a node pointer temp an tl
i wcigi g 1 it reaches to the last no

& 4:IfitisNo .
i the temp to its next node unti

& Step 5 : Keep moving
i = =head).

list (until temp — next 2 |

< Sliep 6 : Set temp — next = newNode and newNode — next head

at Specific location in the list (After a Node)

rtin ;
i g er a node in the circular

We can use the following steps to insert a new node aft
% Step 1: Create a newNode with given value.
Step 2 : Check whether list is Empty (head == NULL). ¢
Step 3 : If it is Empty, then set head = newNode and newNode — next = h
Step 4 :Ifit is Not Empty, then define a node pointer temp and initialjze wit ,"-5 _
Step 5 : Keep moving the temp to its next node until it reaches to the node afte
we want to insert the newNode (until templ — data is equal to location,_.h'
is the node value after which we want to insert the newNode).
% Step 6 : Every time check whether temp is reached to the last node or not.
reached to last node, then display ‘Given node is not found in the list!!!
not possible!!!’ and terminate the function. Otherwise move the temp to next
% Step 7:If temp is reached to the exact node after which we want to insert the new
then check whether it is last node (temp — next = = head). o]
% Sl;::p 3 :If temp is last node then set temp — next = newNode and newNode -
= head. ke
% Step 9:If temp is not last node, then set newNode —s next = temp — next a‘
— next = newNode.

d

S

+,
LR e

Deletion

In a circular linked list, the deleti : . _
e e s e deletion operation can be performed in three ways those

: 1. Deleting from Beginning of the list 3. Deleti '
: : ting a Specific Nod
. 2. Deleting from End of the list R

from Beginning of the list

inate the function.

8 :If it is Not Empty, then defi :
' ’ ne two N 3 A :
i e both ‘temp1’ and gy Tk e ode pointers ‘temp1’ and ‘te:

Check whether list is having only one node (temp1 — next — — h@
10161 TRUE, then set head = NULL and delete templ (Setting

:Ifit is Empty, then diSplay ‘List is Empty!!! Deletion js not poggi“

Lis FALSE, move the temp1 until it reaches to the last node. (u

‘ _head =temp2 — next, templ — next - head and de'
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iDe#eting from End of the list
We

can use the following steps to delete a node from end of the circular linked list :

Step 1 : Check whether list is Empty (head == NULL).

Step 2 : If it is Empty, then display ‘List is Empty!!! Deletion is not possible’ and
terminate the function.

Step 3 : If it is Not Empty, then define two Node pointers ‘templ’ and ‘temp2’ and
initialize ‘temp1’ with head.

Step 4 : Check whether list has only one Node (templ — next == head).

Step 5 : If it is TRUE, then set head = Null and delete templ. And terminate from the
function. (Setting Empty list condition).

Step 6 : If it is FALSE, then set ‘temp2 = temp1 and move templ to its next node.

Repeat the same until temp1 reaches to the last node in the list (until temp1 — next =
= head).

Step 7 : Set temp2 — next = head and delete templ.

leting a Specific Node from the list

We can use the following steps to delete a specific node from the circular linked list :

& ®,
RO

*,
o

&

S

- next and delete templ (free(templ). :

Step 1 : Check whether list is Empty (head = = NULL).

Step 2 : If it is Empty, then display ‘List is Empty!!! Deletion is not possible’ and
terminate the function.

Step 3 : If it is Not empty, then define two Node pointers ‘temp1’ and ‘temp2’ and
initialize ‘temp1’ with head.

Step 4 : Keep moving the temp1 until it reaches to the exact node to be deleted or to the
last node. And every time set ‘temp2 = temp1’ before moving the ‘temp1’ to its next
node.

Step 5 : If it is reached to the last node, then display ‘Given node not found in the
list! Deletion not possible!!!”. And terminate the function.

Step 6 : If it is reached to the exact node which we want to delete, then check whether
list is having only one node (templ — next == head).

Step 7 : If list has only one node and that is the node to be deleted, then set head =
NULL and delete templ (free(templ)).

Step 8 : If list contains multiple nodes, then check whether templ is the first node in
the list (temp1 = = head). -

Step 9 : If templ1 is the first node, then set temp2 = head and keep moving temp2 ol 4
its next node until temp2 reaches to the last node. The set head = head - next,
temp2 — next = head and delete templ. ;

Step 10 : If templ is not first node, then check whether it is last node in the llst(
— next = = head). e ‘
Step 11 : If templ is last node, then set temp2 — next :
(free(templ)). : : BOEAS
Step 12 : If templ1 is not first node and not las no
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nked List
teps to display th
Empty (head —— NULL)

Displaying a Circular Li
We can use the following s

< 1 : Check whether list is ; ' e
& g:::: 2 : Ifit is Empty, then display ‘List is Empty!!?’ and terminate the functi

& Step 3:Ifit is Not Empty, then define a Node Pointer ‘temp’ an.d initialize with b
& Step 4 : Keep displaying temp — data with an arrow (-—>) until temp reacth

last node.
& Step 5 : Finally display temp — dat

o elements of a circular linked list :

a with arrow pointing to head — data.

Doubly Circular linked list K
Doubly Circular linked list has both the properties of doubly linked list andl ireu
linked list. Two consecutive elements are linked by previous and next pointer and th
node points to first node by next pointer and also the previous pointer of the head node p
to the tail node. This two way pointer linking has eliminated all the shortcomings of al
previous linked lists which have been discussed in the previous sections. Node traversal frop
any direction is possible and also jumping from head to tail or from tail to head is only ong|
operation: head pointer previous is tail and also tail pointer next is head. Find the visug
representation of the doubly circular linked list in the below figure. '
Doubly circular linked list - pictorial view :

|

BT

1. Insertion at the end of list or in an empty list -
< Empty List (start = NULL) : A node (Say N) is inserted with data = 5, so pre' =

pointer of N points to N and next pointer of N also poi 3
i oint hoin
points to the first node of the list. points to N. But now start poi

Start ———— NULL

Start \EIE

.. . - . . . -
3 (Ig;t %til:l.ly contan.x some nodes, start points to first node of the List : A
y inserted with data =7, so previous pointer of M points to last n de

pointer of M points to first node and | ’ -
) ! ast node’s ne t poi / i ¥
first node’s previous pointer points to this M node.x pointer points to this M‘

P
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New node (M)

S - I B

Last node

Start \_\L,

]

2. Insertion at the beginning of the list

To insert a node at the beginning of the list, create a node (Say T) with data =5, T next
pointer points to first node of the list, T previous pointer points to last node of the list, last
node’s next pointer points to this T node, first node’s previous pointer also points this T node
and at last don’t forget to shift ‘Start’ pointer to this T node. :

New node (T)

1bhi

{1 .sbog Jxen

. .aaabbi

- elgumarl

223004

3. Insertion in between the nodes of the list _
To insert a node in between the list, two data values are required one afte hich ne
node will be inserted and another is the data of the new noce. i

=
=

Stari-.._‘__E. &7







Insertion &
Deletion

Insertion & deletion takes more time in
array as elements are stored

in
consecutive memory locations.
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Insertion & deletion are fast & easy in

linked list as only value of pointer is
needed to change.

Memory
Allocation

In array, memory is allocated at

compile time ie. Static Memory
Allocation. :

In linked list, memory is allocated at

run time ie. Dynamic Memory
Allocation.

Accessing the
element

Direct or randomly accessed, i.e
Specify the array index or subscript.

Sequentially accessed, i.e., Traverse
starting from the first node in the list
by the pointer.

Searching

Binary search and linear search

linear search

Types

Array can be single dimensional, two
dimensional or multidimensional.

Linked list can be singly, doubly or
circular linked list.

Dependency

In array, each element is independent,
no connection with previous element or
with its location.

In Linked list, location or address of
elements is stored in the link part of
previous element/node.

Extra Space

In array, no pointers are used like
linked list so no need of extra space in
memory for pointer.

In linked list, adjacency between the
elements are maintained using
pointers or links, so pointers are usgd
and for that extra memory space is
needed.

:

scores “—l

scores

scores [1] |

scores [2] ‘:',‘;

scores [3]

- scores [4] | “n/bet"Rigiugas
Anif<-gig =

traversing in Linked h’t‘”'”‘m!’l
1. Set ptr = Start '
. Repeat the 3
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1. Set ptr = Start
2. Repeat the step 3 while ptr | = Null

3. Ifitem==

info [ptr] //Comparing data item with the elements of list

then set loc = ptr and print “search is successful” and exit else

set ptr = link [ptr] //Going to the next linked node
4. Set loc =null and print “search is unsuccessful”

5. Exit.
Example :

//WAP to demonstrate searching,

#include<stdio.h>

#include<stdlib.h>

void main ()

{

struct node

{

int data;

struct node *link;

b

int item, x:

struct node *first, *second, *third, *fourth, *ptr;
first=(struct node*]malloc{smeof(struct node)); GBI
first->data = 1; : o} asied
second=(struct node*)malloc(sizeof(struct node]] ning of Dipd
second->data = 16; W DenTIONSq
third=(struct node*)malloc (sizeof(struct node)); g 168 4
third->data = : BEEELT
fourth=(strut node*]malloc (sizeof(struct node]) '
fourth->data = 10;

ptr = (struct node*)malloc (sizeof(struct node));
first->link = second;

second -> link = third;

third -> link = fourth;

fourth -> link = NULL;

ptr = first;

printf(“Items in linked list are: \11”),
while(ptr ! = NULL)

{ .
printf(“%d\n”, ptr-> data);
ptr = ptr ->link;

}

printf(“Enter item to be
scanf (“%d”, &item);
ptr = first;




else if (item < info[ptr]) Mozl oollnm(*3
set ptr = link(ptr] //Going to the next linked nod
else if (item > info[ptr]) it =3

- bacaes
A=

Set loc=Null and print “search is unsuccessful” and ¢

exit
4. Set loc=null and print “search is unsuccessful” S
5. Exit. :






















top+=1;

stack [top] = item.

int item;
if (top ==—1)
{

printf (“The stack is null and no i
}

else

{

tem can be deleted\n”);

item = stack [top];

top—=1;
return (item); . w'
} |
Int traverse ()

{

int i:

printf (“The stack is null”);
}

else

{

printf (“The elements
for (iztop ;i>=10



Top =Top + 1
=—-1+1

Top =0

7l W Top #1 Value 0 3|

4
3
2

1

10 0<—Top

#41q Stack % 0" Position T Tael Value store/insert 21|
Step 2 :

Top =Top + 1
=0+1
Top =1
9 9 Data item Stack % 1" Index 9T insert g
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Step 2
Top =Top -1
— = "
TOp =0
mtopaﬁvalueO%?ﬁﬂhmm :
P, stack % o
elete@ ST Index W &1 MM, @ 1% Index #! value
4
3
! 2
1
Step 3 :
Top =Top -1
=0-1
Top =-1
Top & value —1 814 & Stack Empty & ST@m St Stack % Underflow a9 & feafa =1
frepresent sh{dl %I
7% 5. Queue F1 &ldl 8?2 $9& Application P! Fane|
ITT—Queue : Queue, data items T sequential collection 2 2 foed 91 91 (Ends) ®

operation perform fehaT ST #| f59 End ¥ Insertion operation faFal ST 2 29 end F “rear” 3R
? end #1 99 Deletion opertion fapan Sl € 39 “front” #&d 2| 1 Data item, Queue ¥ 37
last) ¥ Add/Insert &1 @ 38 Delete/Remove 4 ¥ fou 36 wed 97 Data items % 3
elete HTAT T2 39 THR TH sequential collection #F1 First-in-first-out (FIFO) i el S 2

T Non-primitive linear Data Structure FHecildl 2l
Rear : s - . Front
(Insert) Ty (Delete)

ft 3 situation SR ST BN STET TR & el

E : Kicef! FH- it
xample 1 AR % mwmlﬁ%ﬁ-

Data/Things @ &4 &
1. Railway Reservation Counter |
2. Movie % Ticket & feTll i
T %% TN situations STEI T B el W B9 Queue

3. wrET ¥ < & A F Frwe & o
1 S=T Follow fg &l Bt
2: R EHT® Computer Lab ) I & @ 50
o F A W T Students 3 Docum

Example




: irs st—outSﬁTR % Data Structure 2l :
= item T last ¥ Queue # Insert €M 9% Data, R Data ite
9% (9 last §) remove B

Queue, 39 Data Structure & 9 ¥ & qal deidl  fo 3 %2 "R Data @i - i

(line) & €M1 39 Queue F1 YT YFR F use a1 ST € o€ 1 8— "

1. f#H TF & Resource (¥ & Printer, CPU) &1 use & & f&u|

2. Call Centre H, Si& W U% =AfHd § 14 HI1 & 91¢ & TH =AfF § a1q L |

} 3. Real time system ¥ Sl interruptions 3 € I7#! t Queue F & & handle

4. Resources (39 f& Printer, Scanner, 31f¢) & f&lt Memory allocation (Me

'] : 2 Ff Queue F w9 T & BT 5 Gk .

| 9% 6. Queue WX &N AR operations BT guiH B a1 $7® Algorithm fored| i _- :

i IM—Queue W &I &Y H & YHR F operations perform fFa sa 8—
| 1. Insertion operation (Rear)
2. Deletion Operation (Front)

1. Insertion Operation

Queue ¥ fFH Data item #1 Insert/Add F3 =1 Inse
Rear &} Value &1 U%-U& &t 931 &9 ¢ 5@ 7% f% Que

Example : s

rtion operation gl Wl 2 :
ue F1 Value Full 71 &1 wmy)

10, 20, 30, 40 i
Step 1 : ;

: L CEront=—1
0 ] 3 Rear = -1

3 .
TE W Queue ¥ HE Valye S A9 Front 31 rear =1 Value -1 2 9 w8
Add/Insert FT4 & faw Front sy Rear S #} Value s |







3 to 5 until Rear < max si

Front == -1, then

Front =0
Rear =0

else
Rear = Rear + 1

endif
Step 5 : Set Queue [Rear] = Item - iy SR
Step 6 : Print, Queue Overflow. :

2. Deletion operation

Queue ¥ Tec § inserted Data items ®! Remove 1 Delete %14 & AU Deletion

perform fa1 ST 21 39 foTU front #t value %! TH-TF Fh q9 T 950 ﬁ%%m -
Data item Delete 71 8 STU| 914 ﬁF—

]
Front Rl‘ar pre
Step 1: fe T4 Queue ¥ 20 elements 1 Delete/Remove %1 & 6 70 Y&R ope
Front == 20 :
10 ==20

HH Ygt Front # value ¥, f9 Data item 1 Delete A Sﬂﬁ com
F1 Data €l Data @ &l & f8 Delete FT 2l
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Front ! =20

44 Front #1 value #1 Increment HT
Front = Front + 1
=0+1
Front =1

f 1

Front Rear

Step 2: Front = =20

78 W Front F1 value 20 21 3/ Front  value # ¥R Increment 7 T 7% value Delete &
|
Front = Front & 1
=1+1
Front = 2

30 40

S5

Frontr Rear

¥ 9% Deletion operation perform feman st
F - 1. Queue # Front 3i¥ Rear @i 4@ Index W & I¥ ¥HY Queue ¥ U% Data item
2l :
2. Deletion & &#g &F (Front 3R Rear) U Index | & @ 98 Queue @ last Data
item 2 =& Delete &3 & foT Front 3R Rear i @l value —1 &1 g1l

Algorithm for Deletion
Step 1 : Repeat Step 2 to 4 until front >= 0

Step 2 : Set item = queue [Frontl

Step 3 : if Front = = Rear
ol ‘Set Front = — 1

Set Rear = — 1

i i Front = Front + 1

. 3 m'
Step 4 : Print, Deleted item is, Ite

Step 5 : Print, “Queue 18 empty

o il B &7 wftra # aof= Sifsrel .
.’ Queue  Data #1 Delete F17 % 1% Sl Queue ¥ & F=/@relt &
4 Hehal oid a6 TR Data Delete 7 &l

¥ 7. Circular Quew

SWT—Circular Queu®
ST 7 g e a0
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=-1,R=-1)
fR 2 F—~1+1~0
F =-1+1=
) (Empty Queue) EahR 2 D)
(b) (Queue with one element)
22
giD:D:D B
0 1 2 3 4 5 6
: | AN
F R F R

F=0,(R=R+1=
(©) ( ( TS (d (F=0,R=R+1=2)
(F=0,R=1)

It is clear from the above figure that
alue of Rear is ineremented by one

Rear = Rear + 1 ,

Note that during the insertion of the first element in the Queue we,always increment the
ont by one

whenever we insert an element in the Queue, the

7

1 Front = Front + 1

After this the front will not be changed during the entire addition operation,
2. Deletion : Removing of an element from Queue is called deletion. The following figures
ow the deletion :

22 | 33 Pt R
; > 3233 4 reabal BAE MR IO|1|§‘3456
e P

ith 3 elements) (b) (Queue with 2 elements)
(a) (Queue wi ele

33 ‘ :l

3 AL

—» N

f
F

) (Queus HilE ved or deleted from
(c) (Queu S reitiat whenever an element is remo
This is clear from the above
ed by one.
F Queue the value of front is increment
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1. Static Implementation : When Queue is implemented as an Array, all the

haracteristics of an array are applicable to the queue. Since an array is a static data
<tructure, the array representation of a queue requires the maximum size of the queue to be
;predetermined and fixed. The representation of a queue as an array needs an array to hold
the elements of the queue and two variables, rear and front, to keep track of the rear and the
front ends of the queue respectively. Initially the value of rear and front is set to —1 to indicate
an empty queue. Before we insert a new element in the queue, it is necessary to test the
condition of overflow. The queue is in a condition of overflow (full when Rear is equal the
MAX-1, where max is the maximum size of the array. If the Queue is not full. The insert

operation can be performed. To insert an element in the Queue, Rear is incremented by one,
and the element is inserted at that position.

Similarly, before we delete an element from the Queue, it is necessary to test the
condition of underflow. The Queue is in the condition of underflow (empty) when the value of
front is -1 If the Queue is not empty, delete operation can be performed. To delete an element
from the Queue, the element referred by the front is assigned to a local variable and then
front is incremented by one.

The total number of elements in a Queue at a given point of time can be calculated from
the value of Rear and front as given here.

Number of Elements = ‘ Rear — front + 1

2. Implementation of Queue Using Pointers : Implementing Queues (and stacks)
: using Pointers, the main disadvantage is that a node in a linked list representation (using
Pointers) occupies more memory space than a corresponding element in the array
representation. Since there are at least two fields in each node one the data field and the
other to store the address of next node, whereas the linked list representing only data field is
there. But note that the memory space occupied by a node in a linked representation is not
exactly twice the space used by an element of array representation. Moreover a linked
representation makes an effective utilization of memory. The advantage of linked list
representation becomes apparent when it is needed to insert or delete an element in the
middle of a group of other elements. Suppose we wish to insert an element between the second
and third element in the array of size 10, which already contains eight elements (al0] to a[7])
5o that a slot should be made empty to insert new element. It means we have to shift five
elements. If the array is of large size say 1000 or 2000 elements, it would be equivalent of
doing a bulk of work and gaining no special results. Similarly when an element in between is
deleted it requires all the elements beyond the deleted element to be shifted, so as to fill the
gap created by deletion of element.

On the other hand, linked list representation allow us to stress on our primary aim
(addition & deletion). In other words the amount of work required is independent of the size of

~ the list.
Addition of a new node in between a queue in a linked presentation requires creating a

new node, inserting it in the required position by adjusting two pointers. An individual node
; ueue in linked representation is shown in the figure.






casel:

if (rear < 4)

{
printf( “enter the nuﬂlber")
scanf(“%d”, & info);
if (front = = 1) =
( 3 | £

front=0.

rear = ;

}

else
rear =rear + 1 ;

" Queue [rear] = info;
}

else

printf (“Queue is full”); - il i i "
getch ( ); ' S O

) | 0 SIS X 5136 P
break; . PO ke i
case 2 : ; ; ' '

_ | : BB Aailassihin me
int info; Afms 3 08 B P Shil deak Girgs iy I;i:-"
if (front ! = — 1) gl §
info = Queue [front]; ;, ::._.‘- IF
if (front = = rear) |
‘8 |
fronti=—1: 0
rear=-1;

30 ':[' ,'1

}

else
frc_mt = fron
pl'intf fl’i’ -




}
2. Dynamic implementation (using linked list) susul)') Baiig
Stack 3 Queue &1 implementation Pointer % g1 &4 T memory &I oc
I @ Fifeh 781 W &1 Fields 819  Weel Data field S Data 1 Store F3 % e use
AU Address/link field S f g8 node %1 link #4 % o0 use 211 21 3T ESE
=31 utilization, link list % SR 21l 81 39% &R linked list & insertion 31X Deletlon
feran S T 2 3 |
M f U Array S0 size 10 @ 398 2™ Bﬂ'( 34 elementsaa' Eﬂ'ﬂ ﬁ T Arra
Store/Insert FTA1 =Ed W= Array ¥ 8 elements a[0] to a[7] ‘T@"E:l q 'é %l Insertion
elements a[2] ¥ a[7] 7 AH F TF Place Shift B TI@"TII S‘GEF:T Hddd "Tﬁr (5) ele
AT BT 3N @efl ST 9 74 Element insert &1 ST 1 elements F s 51ze i
dl 9% TF complicated task g1 SN TH TWE IR #= O Element I delete
AR elements F1, Delete BT Element # 3R Shift & eI '

Linked list ¥ new element &1 Insert #%4 % f&TU T% node create F1 TSI

l Front I

B - E=O g, i

> o Rear —
Queue =

Data | Next

New node
Pl 2f w 4 piig kel










Stacks and Queues = *éw
int del ()
{
struct Queue *temp:
int value;
if (Start == NULL)
{ -
printf (“Queue is Empty”);
getch ();
return (0);
}
else
{
temp = start ;
value = temp - > no;
start = start — > next ;
free (temp);
i

return (value);

void traverse ()

{ ,
struct Queue *tel_np;
temp = start; | .
while [tamp >next!-NULL) xhicon piisvlive -‘*-‘*fj-"ui':-;-;-,;;k -
{ x 2 ! , o
printf (“no = %d", tomp’-’-zﬂ*ina): Bk xs
temp = temp — > next ; . >

} osﬁ tﬂlﬁp q}"'}lléi.d bn“da '

prml:f(“l
getch ()i o B :
} Ao 1] iy

Applications of Stack Data

The linear data structure I
1. It can be used to

P ol



Igorithm for evaluating postfix expfessfo"ﬁ 'dsli‘ih“sta&liﬁ’ﬂ olidior

Step 1:
Step 2 :
Step 3 :
Step 4 :
Step 5 :

Step 6 :
Step 7 :
Step 8 :
Step 9 :

Step 10 : stop ‘ rila sighs

start r
for (each character ch in the postfix expression)

If operand is found push it into the stack qris
else

If operator is found then pop the stack 2 tlmes

OP2 = pop () OP1 = pop ()

Perform the specified operation as result = OP1 opefator OP2
Push the intermediate result back into the stack
Repeat the above steps until the end of the expressmn
pop the stack to obtain the final result .

710}
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Stacks and Queues = Q‘E

rower ©f pool = -
Tower of Hanoi, is a mathematical puzzle which
consists of three towers (pegs) and more than one
g 15 25 depicted : |
These rings are of different sizes and stacked
on in an ascending order, i.e. the smaller one sits
ver the larger one. There are other variations of the
puzzle where the number of disks increase, but the
rower count remains the same.

Rules

The mission is to move all the disks to some Step: 0

another tower without violating the sequence of

arrangement. A few rules to be followed for Tower of

Hanoi are :

# Only one disk can be moved among the towers at
any given time.

% Only the “top” disk can be removed.
% No large disk can sit over a small disk.
Following is an animated representation of solving a Tower of Hanoi puzzle with three

disks.
Tower of Hanoi puzzle with n disks can be solved in minimum 2" —1 steps. This

presentation shows that a puzzle with 3 disks has taken 2% — 1 =17 steps.

Igorithm

To write an algorithm for Tower of Hanoi,
irst we need to learn how to solve this problem
with lesser amount of disks, say — 1 or 2. We
ark three towers with name, source,
destination and aux (only to help moving the
disks). If we have only one disk, then it can
easily be moved from source to destination peg.

If we have 2 disks :
# First, we move the smaller (t A
& Then, we move the larger (bottom) disk to destination peg.

& And finally, we move the smaller disk from aux to destination peg.
algorithm for Tower of Hanoi with more than

arts. The largest disk (n ' disk) is in one part

Step: 0

Source Destination  Auxiliary |

op) disk to aux peg.

So now, we are in a position to design an
two disks. We divide the stack of disks in two P
and all other (n — 1) disks are in the second part.
Our ultimate aim is to move disk n from source to destination and then put all other (n — 1)

disks onto it. We can imagine to apply the same in a recursive way for all given set of disks.

N1
LTRE









to|If the control condition in the ite
eon::;i(;. it statement never become false

Double Ended Queue ' ﬂgﬂm :

et e

ibmein,

Double Ended Queue is also a Dequeue data s
operations are performed at both the ends (front and rea
front and rear positions and can delete from both front and re

Double Ended Queue can be represented in TWO ways, those are as follow.
1. Input Restricted Double Ended Queue.







S T

M Dynamic implementation

@  Data Structure Using C “
of FRONT and REAR to -

the value
.. Lioino the queue, We set B
& When initializing e R ularly increase the value of REA R

e eing an i .
& On enquel g the position po inted to by REAR.

he new element in ’ D OYNT &
:): dequeueing an element, We return the value pointed to by FRC .

increase the FRONT index. ]
Before enqueueing, we check if queue is already full.

Before dequeueing, we check if queue 1s already empty. -
When enqueueing the first element, we set the value of FRONT to 0. .
When dequeueing the last element, we reset the values of FRONT and RE

2

o, . 0 .
RS I <3

However, the check for full queue has a new additional case : vl
# Case 1 : FRONT = 0 && REAR = = SIZE - 1 |

& Case 2: FRONT = REAR + 1 i
The second case happens when REAR starts from 0 due to circular inc
and when its value is just 1 less than FRONT, the queue is full. 1

For example- A group of advocates having a discussion on a round table or an
baggage carousel ]

Applications

< In re-buffering problem, circular queue joins the front and rear part which r
easier to solve. b

% There are queues of processes in operating system that are waiting for a ‘.
function to occur. .

% You could even use a circular queue to simulate and analyse real world que bjl;

Static Implementation

Stack &1 Static implementation F & faw Array 1 use f&n s
implementation T @gd & & TWH 2 W A% flexible (changeable) & 2| s f3
size, Program %1 Design #%d 99 declare 7 f&an T @ 3T Size # change F&1 & 7
Memory I H&l % ¥ use FH % foTU static initialization effective T&f 2ra1 2

Dynamic implementation is also called Ij
implement the stack type of data structure.

(Dynamic implementation &1 linked list implementation % 919 § ST
implementation #I represent ¥ ¥ AU Pointer 1 A foba s 1) L

nked list representation and uses

RS



| Stacks and Queyes » 109)
ray Representation of Stacy

Stack & computer § &g THR | Tepresent ¢ TFY 3 1 .
Stack & top ele ay U ©l 3oy % Pointer

: ; ment i represent .
stack ¥ mayimum S 5 F 2 3R T variable
ndition Top = =141 Top = NULL & o AT

X y 2

4 5 Bl 7
| i
i Stack [8]

7el W Top Ft Value2§ﬁ1?rgafﬂ-m

? % 39 Stack ¥ 7
(5) elements store gl Thd %’l

(3) element (x, y 3t z) & 9o 3ix

erflow FEAal & 3R Pop operatio
Tl afe 7= 9t g8 Condition, Underflow FHEA)

Stack ¥ Push 3R Pop operation #33 ¥ feTe. srem-atem Procedures € S f ¥ -
Procedure 1 : Push ( STACK, TOP, MAXSTK, ITEM)

¥ procedure % ZWI fFE st ITEM %1 Stack ¥ insert far S Twar 2
1. [STACK already filled?]

If TOP = MAXSTK, then Print “overflow” and Return.

. Set TOP = TOP + 1. [Increases Top by 1]

. Set STACK [TOP] = ITEM [Insert ITEM in new TOP position]
. Return.

Procedure 2 ;: POP (STACK, TOP, ITEM)
%9 Procedure & &R Stack % Top § fH 4t item 1 delete foan 51 Faar 2
1. [Stack has an item to be removed?] L
T
If TOP = — 1, then Print Underflow and Retu
2. Set ITEM = STACK [TOP]. [Assign Top element to ITEM]
3. Set TOP = TOP —1 [Decreases Top by 1.1

: S stack & operations i represent &, Array &1 use
Program : w# @@ Program foif@q

#include <stdio.h>
#include <conio.h>
#include <stlib.h>
#define MAXSIZE 10
void Push ( );

nt Pop ( );






{ Stacks ang Queues d
printf (“enter the elem

scanf (“%d” & item)
top = top + 1:
stack [TOP] = item;

ent to he inserted"]'

]

}

g

int Pop ()
{
int item:
it (Top == -1)

printf (“The stack is empty”)
getch ();
}
else
{
item = stack [top];
top =top - 1;
}
return (item);
}
void traverse ()
{
int i;
if (top ==-1)

printf (“The stack is empty™);
getCh { };
}

else

for (i=Top; 1> =0;i—-)
{ rintf (“traverse the element”);
printf (“\n%d”, stack [i]);
}
i
}

i f Stack
resentatlon (0] : :
Jist % 8T represent F & fau singly linked list &1 wa foRan S 2l

inked list ReP




.~ w Data Structure Using C

Node
[ Data [Adress|

fay Data field, stack F item F1 store HT 3 Address field, stack ai

node ¥ link I
Top (START)

LTI {=] J—:,___

Top of stack ~ Bottom of stack

7&l W linked list %1 Start Pointer, Stack % Top Pointer #! @& use s‘rrn
item T NULL Pointer bottom item FI represent ®I|

Push operation Perform Wﬁ{ % fom | ‘ :
item 1 fi
item Delete * & ront AT start 'P-T insert Eﬁﬁ! @T

Top (START)

X y Z

|

Top (START)

RS S =

Stack after Pop operation (Deletlon)
Program, Stack % operation #I linkeq

IISt%m&HWM-; l_










Sorting Algorithms

sorting

Sorting refers to arranging data in a particular format. Sorting algorithm specifies the
way to arrange data in a particular order. Most common orders are in numerical or
lexicographical order.

The importance of sorting lies in the fact that data searching can be optimized to a very
high level, if data is stored in a sorted manner. Sorting is also used to represent data in more
readable formats. Following are some of the examples of sorting in real-life scenarios :

¢ Telephone Directory : The telephone directory stores the telephone numbers of
people sorted by their names, so that the names can be searched easily.

% Dictionary : The dictionary stores words in an alphabetical order so that searching of
any word becomes easy.

Different Sorting Algorithms F 220l

There are many different techniques available for sorting, differentiated by their

efficiency and space requirements. Following are some sorting techniques :

Insertion sort

In this method, sorting i oA
the sorted list has only one element.

Proper position.

s done by inserting elements into an existing sorted list. Initially,
r elements are gradually added into the list in the

Merge sort lements are divided into partitions until each parﬁtion has sorted
In this methol;i, th;aiti tions are merged and the elements are properly positioned to get a
elements. Then, these par .

fully sorted list.

Quick sort clement called pivot is identified and that element is fixed in its place
In this method,lzrx:lents less than that to its left and all the elements greater than that to
by moving all the €

its right.

Radix sort hod, sorting is done based on the place values of the number. In this scheme,
eton t:he less-significant digits first. When all the numbers are sorted on a more

rting is done




@ w Data Structure Using G

at have the same digit in that position but diffe |

significant digit, numbers th osition.

less-significant position are already sorted on the less-significant p

Heap sort | | . . |
In this method, the file to be sorted is interpreted as a binary tree.

sequential representation of binary tree, is used to implement the heap sort. :
The basic premise behind sorting an array is that its elements start out i
order and need to be arranged from lowest to highest.
It is easy to see that the list
1,5, 6, 19, 23, 45, 67, 98, 124, 401
is sorted, whereas the list
4, 1, 90, 34, 100, 45, 23, 82, 11, 0, 600, 345 Fola
is not. The property that makes the second one “not sorted” is that there
elements that are out of order. The first item is greater than the second instead
likewise the third is greater than the fourth and so on. Once this observation is made
very hard to devise a sort that proceeds by examining adjacent elements to see
order, and swapping them if they are not.
Selection sort wrigale \
In this technique, the first element is selected and compared with all other e
any other element is less than the first element swapping should take place. By
this comparison, the least element most top position in the array. This is known as
pass II, the second element is selected and compared with all other elements. Swa,pi
place if any other element is less than selected element. This process/continues until a
sorted. ]

The no. of passes in array compares to size of array—1.

Bubble sort 5 1ol
This technique compares last element with the preceding element. If the last elem:

less than that of preceding element swapping takes place. Then the precédin_g

compared with that previous element. This process contiunes until the II and I éle
compared with each other. This is known as passl1. ;

Ty
&

This way the number of passes would be equal to size of array-1.

we= 1. Sorting 41 gl 82 A fbaA TOR & B &2

SW—Data structure ¥ sorting 3€ A ¢ &% 57 ¥W Data =1 wF logic
arrange F3d 2| I8 logical order Ascending order “ii & Ha&dar & 3R Descending o
HHdl 2| 7l Ascending F1 31 BT & 5gd H 3 descending 1 31 BT %‘Eﬁa }
Sorting 1 #4 He4 GG (searching) ¥ B TOMH AT g & g Fﬂﬁ%ﬁ? gf
% Google ¥ FIg Topic.
% Book H #¢ page.

£ sid o S0

% Exam ¥ Roll no.



. Sort :
- . o = rting Algorithms w @
3 gt <o S B R 9 sorteq (Arrange) #r &

1. Internal sorting
2. External sorting

1. Internal sorting : 39 gorti

sortin, ng 4
ot o g sortmmﬁaﬁn'ﬂ‘ﬁ%amainmemoryﬁﬁw%lﬁ
1. Bubble sort

4,
2. Insertion sort Heap sort

5. Selecti
3. Quickidont election sort
2. External Sorting : 39 sorting ¥ sort fF) sy aren data secondary memory ¥ &l &

dat\a RS I'F' &I % f& 5 main memory o T a1 21 External sorting U& &
YHR I Bl © 98 T Merge sort.

Insertion Sort

This is an in-place comparison-based sorting algorithm. rere, a sub-list is maintained
which is always sorted. For example, the lower part of an array is maintained to be sorted. An
element which is to be ‘inserted’ in this sorted sub-list, has to find its appropriate place and
then it has to be inserted there. Hence the name, insertion sort.

The array is searched sequentially and unsorted items are moved and inserted into the
sorted sub-list (in the same array). This algorithm is not suitable for large data sets as its
average and worst case complexity are of O(n?), where n is the number of items.

ow Insertion Sort Works ?

We take an unsorted array for our example

two elements.

Insertion sort compares the first

order. For now, 14 is in sorted
It finds that both 14 and 33 are
ub-list

already in ascending

T 222

= ¥
PR VA




It.: waps 33 with 27. It élso checks with all the eleme :
that thse sorted sub-list has only one element 14, ang 2 ,:%
sub-list remains sorted after swapping. ;

DA g

However, swapping makes 27 and 10 unsorted. ;.ll?l.’

0 < .

Again we find 14 and 10 in an unsorted o

- We swap them again. By the end bﬁm re lite

|

This process goes on
 shall see some program



entation | |
. . ' Sorting Algorithmg 1
yoid insertion_sort (int A[ ], int n) :
{

for(inti:O:i<n'i++)

J
\

/#storing current element w
. nt whose Jeft side is ch
int temp = A [i]; Posadiaris correct posi
, Position.*/

intj =%
[* check whether the adjacent elem
the current element.*/ ¥
while (j>0 && temp < A[j -1])
{
//moving the left side elen
_ : 1ent to one position f;
Al h orward,
=) 1;

s it
in left side ig 8reater or less thap

}

I :
//moving current element to its correct position

A [j] = temp;
}
}
Take array A[]=[7,4,5,2].
g No element on left side
Step 1: 71415 gl =—">  of 7,50 no change in its :
ﬂ position.
s e
tep 2 : —"> As 7>4, therefore 7 will
p2: [7]4]5[2] => [4]7[812= B i e o

here checking on will be moved to 7's
left side of 4. position.

y
: P —> As 7>5,7 will be moved
Step 3 : 41 74 512 nﬂ forward, but 4 <5, s?4no
hecking on change in position of 4.
T—-] Ir:f!triige of 5.9 And 5 will be moved to
position of 7.

Step 4 :

(N /) , ]
= [2[A[5[7F> Kiesnam anz.soat
- the elements will be moved

| here checking forward and 2 will be shifted
on left side of 2 to position of 4

Since 7 is the first element, has no other element to be compared with, it remains at its

bosition, Now when on moving towards 47 is the largest ele‘mtfnt in tl.xe sorted list and
: r than 4. S0, move 4 to its correct position j.e. before 7. Similarly with 5, as 7 (largest
at in the 50 rted list) is greater than B wel ‘move 5 to its correct position. Finally for




e of 2 (sorted list) are moved one position forward ag ;

lements on the left sid ds . 8 e
z;:::;::l :him 9 and then 2 is placed in the first position. Finally, the given array will res;

a sorted array. -
495 2. Insertion sort @41 211 27 Example & FRT FH@RE 71 Algorithm

I¥{—Insertion sort TF simple sorting method 2 fyad Tedl data {iﬁ data §
1 T 1 3T VRSN data T data @ 991 £ A I I F value FI 3qE W seo faa
T value #1 TR value ¥ compare X €1 3R THY value @ | 91T 2 @ value
Te value ¥ i campare fFa1 ST 21

 Example : 1 fis 59R ot Frfied Array & R0 @ short AR

Pass 0: 54F 341 8 HiE A% 6
0 it a2 SN BEEd

Pass 1: Insertion sort ¥ Weel & 21 elements % compare &1 Sl 2l

SHE 3¢ 85k 4 486

A

5> 3 R
%5,3ﬁwﬁi}mﬁmwaﬁa(swaméﬁl '
Pass 2 : : 3358 486
0. 18 20 T o
ﬂﬁﬂﬂf»@a’(Saﬁcomparem%@ﬁﬁ%ﬂﬁ@ﬁsorted%sﬂf‘ﬂnga;mA Qui
' J’—\\;”—\\‘ datg
Pass 3 : 3 k5484l 6 e
| [ 1 anot,
3133?8@]?(4% compare"ﬁ?ll%8>4ﬂﬂgmﬁﬂwapﬁlm,%ﬁ‘-{m st: (
unsonedﬁ.ﬁl'&ﬁmi%‘ﬁmﬁswapm sort % forar smar 2 ' syl
— £x anq
5 D 40 Qi
B
1’__\ ¢ alg()rj
¥ ge 8
15 %1417 g 886 ]
D St
: : S
3 L4 £ 54 8 S:
TR R ey St:
dtﬁ‘ﬁmmpmﬁfﬁ&ﬁ?h@lmﬂmm Stq




Sorting Algorithms w @
ENEN K i oy
34

. 555:31?11'{%“5{'@ Sorted Array 3w 2,
a

3 4 5 6 8
0 1 2 3 4

plgorithm of Insertion sort

jnsertion sort (ALMAXSIZE), item)
Stepli:setk=1
Step2:fork=1to (n-1)
Set temp = a [k]
Setd =k-1
while temp < a [j] and (j> 0)
set a [j+1] =a [j]
[End of loop]
Assign the value of temp to a [j+1].
Step 3 : Exit.

Quick Short

i i d is based on partitioning of array of
‘ i i ient sorting algorithm an . .
A leck sortﬁs a hlgahl:’ iﬁlcellrge array is partitioned into two ar;ays (::‘:‘ olf; ::h,::d:fiz
- » ~ 0
valz\elsnsto Sﬁla tei:‘azr:hz specified value, say pivot, bfsed on which the partiti
maller ; 4
an the pivot valu _

i array bolde s greale 1:};nd then calls itself recursively twice to so.rt the two
Quick sort; PAEEEE aln ar:;;rl is quite efficient for large-sized data sets as its average
fesulting subarrays. This algor

is the number of items.
and worst case complexity are of O(n?), wherenis t

Quick Sort Pivot Algorithmding of partitioning in quick sort, we will now try to write an
Based on our understan ,

algorithm for it, which is as follo'w:ex
Step 1 : Choose the highest in

: int
Step 2 : Take two variables t0 iprfdex
Step 3 : Left points to th; lot‘;vigh

; : the : .

Step 4 : Right points tzleft s less than pivot move right
Step 5 : While value at right is greater than pivot move left
Step 6 : While value 5aand step 6 do not match swap left and right
Step 7 : If both steP

ht, the point where they meet is new pivot

Step 8 : If left = Tig

value has pivot
left and right of the list excluding pivot



rt Algorithm O
blaie i o ithm recursively, we end up with

UpDs wapiges g ick sort. We deﬁne recurs .

partition is then processed for qui

follows :
Step 1 : Make the right-most index value pivot

Step 2 : Partition the array using pivot value
. Step 3 : Quick sort left partition recurswely
Step 4 : Quick sort right partition recursively

Example :

1. Start with an unsorted collection

2. Choose an element as the pivot

7/

8 ) 1 o/}
—- -

less than pivot - greater than pivot

2. Using the pivot, partition the collection into 2 parts
than the partition will be moved to the left/front
elements larger than the plvot will be move to the ig

3 continue choosing a pivot and pai'titlon
Lk recursively) until all the elements are so
original pivot, - zqia 10, Yokl Srhi




| the elements smaller than the pivot, and another half that containg
al o the pivot. It1l continue calling itself upon itself recursively unti] jt
th:h list—remember that one element in a list is, by definition, consj
ed

Sorting Algorithms = (123

all the elements larger

has only one element in
dered sorted,

How Quick Sorting Works ?

Tollowing are the steps involved in quick sort algorithm :

1.

After selecting an element ag pivot, which i
divide the array for the first time.

In quick sort, we call this partitionin

s the last index of the array in our case, we

g. It is not simple breaking down of array into 2
subarrays, but in case of partitioning, the array elements are so positioned that all the

elements smaller than the pivot will be on the left side of the pivot and all the
elements greater than the pivot will be on the right side of it.

And the pivot element will be at its final sorted position.
The elements to the left and right, may not be sorted.

Then we pick subarrays, elements on the left of pivot and elements on the right of
pivot, and we perform partitioning on them by choosing a pivet in the subarrays.

Let’s consider an array with values {9, 7,5, 11, 12, 21453516 5!
Below, we have a pictorial representation of how quick sort will sort the given array.

p r
0.1 2 3.4 5 6 Wicus

97511122143106]

p q ! ¥

1) wp = o
huti el ‘~;
e -”"}l_







swap (&arr [i+
return (i+1);
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799 3. Quick sort &1 2ira 22 gu®! example & gl SRl
37— Quick sort T divide & conquer Algorithm T
sorting technique ¥ Array % elements 2 B arra}(!%?m il
=9 Sorting & Wa¥ Tedl list ¥ ¥ feft +ft elements el select I
pivot & SR elements §9% AT (left side) TH TR Sfeifeh pivot & !
side) T T ‘ {1 dgidf 8
Quick sort #1 3d Complexity -O (n log n) 2 97 3FH! worst case
n, elements 1 & 81 FAITH worst case # 9t quick sort &l compl :
fast A9 efficient B i | ‘ﬂrm :
Algorithm for Quick sort asiz 11 S
Step 1 : Array list ¥ T# element &I select T 7 fog &| pivot val
Step 2 : Element F1 30 YR g9 Arrange %1 8 fF 3 @l element
BAE Y Arf-ay F T (left) WH TR & 3 ¥ Gt elements ST pivo
array F T (right-side) T% W@l W @ 3 9 elements SiI pag\f?g
st i 7% @ 51 g 21 | |
Step 3 : Array % SHI 9ml FI sort fFan s 2, M W'ﬂﬁm
YA FTF short fFan s 21 i
Example : Complet of Quick sort : Quick sort #1 Tuzr % e
8 33 6 3 21
0 1 2 3 ¢
¥ Array F1 sort F ¥ feru (Ascending order ) f= s
Pass First : i
4 Bﬁte:a: : Fag qge Array % Index 0 (y3) a;’l .Piﬂ, .
€g A (n-1) Index &1 End ﬁ,represent'qﬁﬁ,[ 2

8 “,_‘ x



Step 4 : 39 pivo
@

Step 5 : |
last index §
i
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151 34 | 30| 12 B 4
mgaArraysEh:l o 2wt § fafeE e s &
[15 | 3 30 | 12 5 —

o 74 T Arrays 1 ¥t fawfsm #= T
mqﬁmmm%i e%‘%‘-ﬂ:‘%.ﬁ'ﬁ1“""":"a“’w”l*elemeni;ﬂ%'ﬂ,ﬁrﬁ
34‘ 30 124 Fasg o Fat 3| |50
7279 71 T@ F SH FFR combine FI f5ra wam A fasfom g &1
m% T 9 element B YOIF list ¥ fU compare W ¥ FU1 IqH G T short FH

cqmbineﬁmmﬁlwﬁqﬁ 15 3R 343ﬁcompare$'{‘a§¢{ﬁﬁ?ﬁ%ﬁﬁﬁsorted'§, 30
#7112 31 compare a1 ST € FAifE 30, 12 =1 ¢ Tafe 12 F1 30 ¥ TEA fer@l
38 3% 21 3 compare FXN| TAH 21 F 38 | e o, 43 3 50 TEd ¥ sorted ¥

12 | 30 21 | 38 43 | 50

78 &9 3 elements STl list T compare caul

\12 15 | 30 ﬂ 21 | 38 | 43 | 50

THF A mﬁs'qafa'{ifﬁcomparemmél

el

Algorithm of Merge Sort :
Merge_sort (Arr, oW, high)
1. if (low<high)
set mid= (1ow+high) 12 y
call merge_sort (Arr, 10\"V, mlh)j %
g merge_sor;:rﬁ:vmﬁg ’mi§+1, high)
call merging (Arr, 07 ,
2. End. \ A
e 2. Heapstﬁ'tﬂmi‘w e ple & gRT & o

Trre—Heap ; S0 500 41 % T TS A B element F first position T TN S
#1 39 webR ¥ ordering 3 feg O different type % data structure 1 YT fHan s @ o Heap
Tl s 2 < & omplete binary tree 3 9 (form) 2 e 32|
T f HeaP * _
ypes o oy
Heap 2
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2. Max Heap

L] UL hl heap ‘%ﬁ'ﬂ'ﬁ‘a‘lﬁﬂi Parentnode

1. Min Heap
1. Min Heap : Min Heap &1 Ascending Heap.
3173 child node ¥ BT A equal (FH7) 2rm =4

MIN Heap

2. Max Heap : Max heap T descending heap, 38 ¥ 1 heap g f5@¥ parent node #
value, 3% child node # value & &l 41 equal (WHF) et 2

MAX Heap . 2
o
Example : Heap sort ! 9gH % T U unsorted array % &d 2
9 1] 6 [45] 22|10 (129|671 17 g

aW:‘TArray H elements #1 TH-TF FF tree & represent f&a1 STwm afe Array &1 F1E
valuep:;ent node q: o1 & @ 98 9 location W store B TR qal (i—1)/2y'§ spui(l
parent %I value ¥ swap F{ 7| TH element #1 399 new parent nodeé

e < 2 it 37 value j
SRS -
?» @ 39 Process # 79 7 1;:;13;;1(?[1 ? 31: Ezﬁﬁﬂ?agf;ﬂjﬁ ST 1 value, parent
3 swa

f&@n 7 Array sort #3 2 PRILE S qg’“

- Step 1 : T&¢T element-9 Arr ;
3 - ay & I : _
resent ¥ % Index [0] T store %1 THfeT TEHI Tree

e

3 ¥
- vRE S
: -
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s 37d HU element tree ¥ (Array Index [1] oy
5 ot 9 1 Jeft child 59,

1
7@ 111, 9§ compare 52 ST 2, it fi (_1y9 (1-1)2 =0

Array [0] < Array [1]
9 < G4

5@ 571 value H1 39H ¥ swap F (wew) @ ST, A Tree 70 wom frars 3m—
0
1

3R Array

11 9 6 1 45F 224 10°F 12 ] 90 67 17
0 1 2 3 4 5 6 7 8 9

Step 3 : 379 Array I WIS element 6 3T parent node ¥ compare B S & (i-1)/2 =
(2-1)2 = 1/2 =0 W &I

Array [0] > Array [2]
11 > 6

99 A swap el e 3R Array ¥ FIE changﬂ;ﬁ@‘ﬂ,ﬁltreeaﬂ?Maysﬂmﬁ@lﬁa—
o ©

nﬂm 22 | 10 | 12 | 90 | 67 17l

0
fiF 3701 parent node ¥

4th

. Array I
Step 4 (312 = 9/2 =1 W
Arr

,mpare 2 it (-1)/2=







step © nt node @ Nt
PNE 5-1/2=4/2=2 W R compmfm"ﬂlarqrnghﬁ-

Array [2] < Array [5]
6 <10

= 77 value 3T & swap Erfl

T I A parent node ¥ compare B W f& (i-1)/2=(2-1/2=1/2=0
Array [0] > Array [1]
¥ case § swapping F& @Ml @ Tree 3iR Array 39 ¥R E'ﬁ—

Ferif 17

as |22 [10] 9|

Step 7: — clement 12 & S & 379 parent node ¥ compare ¥ S f&

(i-1)/2=@-1/2=5/2=2R ¥
Array [2] < Array (6]
' 10 < 12

¥ case # ?ﬁaﬁ value gwap 'a’l'l'ﬁl

Pa,entnode‘?‘ compare B S f& (i-1)/2=©2-1)/2=1/2=0
TA: sd! 39 Array [0] > Array [2]
45 > 10

ges 2@ & @ Tree 3N Array 39 ¥R N—






Step 9 : 3TTE e
;(:‘-1)/2:(8—1)/-257

T 3 values
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@meﬁﬁposition if
(L s parent node ¥ comp?;;<Array ¥ ;
: a,
6 = 90 < 67
s e T el e ‘t
¥ p=< |
e Tl e W SH 10 ﬁ
900- 1 2 3 4 5 6 7 |
10 : ¥ last element 17 37 parent node ¥ compal
Step : : I
('-1)/2:(9-1)/2:3/2_4111% PaEy :
l Array [4] < Array [9]
11 < F%
cl

ol
Y7: 351 compare, parent node ¥ f&a1 SR S position (-1 /2——§ (4-
Array [1] > Array [4] A A593 /
6 >17T :
&4 value swap &l Eul

T8 YER 36 S Array ferT 9% sorted order # BM—

E:U ‘._“ : — : i‘ = ‘:i = 'L“' - ‘
90 | 67 | 12| 45 |

it
Buhble Sort

Bubble sort is a simple sorting algorithm. This sorting algori
algorithm in which each pair of adjacent elements is compared and the
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sthey are not in order. This algorithm is not suitable for |

i arge dat ;
qorst case complexity are of O(n®) where n is the number g€ data sets as its average and

of items,
Example :
We take an unsorted array for our example. Bubble sort takes

it short and precise.
DEEOn

Bubble sort starts with very first two elements, comparing them to check which one is
greater.

O(n?) time so we're keeping

In this case, value 33 is greater than 14, so it is already in sorted locations. Next, we

compare 33 with 27.
l‘ 14| 33| 27 |'35:|[;10J|

We find that 27 is smaller than 33 and these two values must be swapped.

|35 |l 10

The new array should look lik

We find that both are in already sorted positions.

ext two values, 35 and 1. .

Next we compare 33 and 35.

Then we move to the n

nd of the array. After one
We swap these values. We find that we have reached the €

ration, the array should look like this :

S o E R
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140, = . showing how an array <hould look like after each “Qr.thn‘
0 : .

To be precise: we are rlshoul d look like this :

: ; i
the second iteration, |
i

cach iteration, at least one value moves at the end.

Notice that after

ts learns that an array is completely sorted.

[

red, bubble sor

EEEE

d look into some practical aspects of bubble sort.

And when there is swap requi

Now we shoul
il

Algorithm of Bubble Sort o

Step 1 : Repeat Steps 2 and 3 for i=1to 10
Step 2 : Set j=1
Step 3 : Repeat while j<=n :
(A) if afi] < alj] nal
Then interchange a[i] and a[j]
[End of if]
(B) Set j =j+1 L
[End of inner Loop]
[End of Step 1 Outer Loop]
Step 4 : Exit
Implementation in C
#include <stdio.h>
#include <stdbool.h>

#define MAX 10
int listftMAX] = {1,8,4,6,0,3,5,2,7,9};

void display()
{
int i:
printf("\n");
// navigate through all items
for (i = 0;i < MAX;i++)

printf("%d" list(i]);
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printf("\n"); Al
}
void bubbleSort()
{

int temp;

int 1,j;

bool swapped = false:
// loop through all numbers I3k
for (1=0; 1 < MAX-1; i+ +) i

swapped = false:

/I loop through numbers falling ahead
for(j = 0; j < MAX-1-i; j+ +)

printf(" Items compared; [%d, %d ]", list[j], list[j+1]);

// check if next number is lesser than current no
// swap the numbers.
// (Bubble up the highest number)

if(list[j] > list[j+1]

temp = list[j];
list[j] = list[j+1];
list[j+1] = temp;

swapped = true; (it - ousquog waadl s
printf(" = swapped [%d, 96d]\n" list[j] list[j+1]); b 118l apiagaetl

I

else

printf("=> not swapped\n");
i i

}

// if no number w
" array is sorted
a(!'swapped)

as swapped that means -.'m. 3
ow, break the loop- oS GaT S IEE







lteration 2#; (1403526789}

Iteration 4#;[0132456789]

Items compared: [ 1,4 ] =» pot Swapped
Items compared: [ 4,0 ] = swapped [0, 4]
Items compared: [ 4, 3 ] = Swapped [3, 4)
Items compared: [ 4, 5 ] =5 not swapped

Items compared: [ 5,2 ] => swapped [ﬁ, 5]

Items compared: [ 5, 6 ] => not swapped

Items compared: [ 6, 7 ] => not swapped Lt
lteration 3#:[1034256789]
Items compared: [ 1, 0 ] => swapped [0, 1]
Items compared: [ 1, 3 ] => not swapped
Items compared: [ 3, 4 ] => not swapped ‘.
Items compared: [ 4, 2]=> swapped [2,4] Kok
Items compared: [ 4,5]1=>notswapped
Items compared: [ 5, 6 ] => not swapped -5 pap ssch g

Items compared: [ 0,1] =>not*sw€ p e
Items compared: [ 1, 3 ]=> not awapyed
Items compared: [ 3,2 1=




SEARCHING

Searching is a process of locating a particular element present in a gvep
The element may be a record, a table, or a file. - o

A search algorithm is an algorithm that accepts an argumenF a’ and ries
element whose value is ‘a’. It is possible that the search for a particular 9] -
unsuccessful if that element does not exist. There are a number of technig
searching. B

Some of the standard searching techniques that are being followed in data st
listed below :

1. Linear Search or Sequential Search
2. Binary Search

Linear Search

This is the simplest method for searching. In this technique of search.ing,- he ¢
be found is searched sequentially in the list. This method can be performed on a s
unsorted list (usually arrays). In case of a sorted list searching starts from Oth
continues until the element is found from the list or the element whose value is g
(assuming the list is sorted in ascending order), the value being searched is €

As against this, searching in case of unsorted list also begins from the Oth el
continues until the element or the end of the list is reached. '

10 1 9 1 46 20 16

One-Dimensional Array having 7 Elements

Example :

The list given below is the list of elements in an unsorted array. The &
elements. Suppose the element to be searched is ‘467, so 46 is compared with
starting from the 0" element and searching process ends where 46 is found

The performance of the linear search can be measured by counting the ¢
‘to find out an element. The number of comparisons is O(n).

Algorithm analysis should begin with a clear statement of the task t
ows us both to check that the algorithm is correct and to ensure that
1paring perform the same task.



Tablesw (145

Although there are many wa
hat are of primary importance to
4 time complexity : how the
% space complexity : how the
size of the input.
The linear search can be applied for bo
1. Linear search for Unsorted lis:
2. Linear search for sorted list

th unsorted & sorted list.

1. Linear Search for Unsorted list :

Linear search algorithm finds
complexity where n is total numb.
comparing of search ;
results writh Glo ?(l)ir:;nt with the first element in the list. If both are
list, If both are maEaEEE otherwise search element is compared with next n;af'ching.' then
the next clmE R RERE ’l then the result is “element found”. Otherwise repeatilfment % ?he
that last element also t:lotesstnl'ltnrt:l\tsflfrtg ele!]!]lent g ) iast; olgna 1’:1 ii?z:tg

, then the result is “El ; : 4
means : ement not fc 2
s, the search element is compared with element by element in t(:)he ‘I)il::.d .m fhe izt

Linear search is implemented using following steps :
%+ Step 1 : Read the search element from the user.
<+ Step 2 : Compare, the search element with the first element in the list.
% Step 3 : If both are matching, then display “Given element found!!!” and terminate the

function.
% Step 4 : If both are not matching, then compare search element with the next element

4 Step 5 : Repeat steps 3 and 4 until the search element is compared mfh“tﬂe last

element in the list.
< Step 6 : If the last element in the list is
found!!!” and terminate the function.

Example :

Consider the following list 0
0 158 2 3 4

65 | 20 |

f elements and search element :
yil B

list

Step ]_-l%-,_g@arch element (12) is com]
0, 1. Tl

Padgads J“Af*r
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list | 65 | 20 |
1l it
- Both are not matching. So move to next element. ‘
Step 3 : search element (12) is compared with next element (1
0 e

list | 65 |

‘Both are not matching-.-- So move to nexi:jvelecmie_rnt‘,.l i
Step 4 : search element (12) is compared with.:n;é;xt; :
0 | 21553 Hadhae @

ist| 65 ] 20 | 10 [ 55] 32|

12 1!

Step 5 : search element (12) is compared with next éiéme ‘
0 172 T3 e o

Step 6 : search element (12) is compared
: : QR 2

search for sorted

,,
L1



int 1

return | rx |

}

- The code searches fi
terminate in one of two
condition fails. If the e
with a break statemen
that size (thus the loop
was not found).

] xample :

Assume the eleme
48, 50. The Linear
not 12 (value 45),
elements before 45
the search value
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printf(“Enter size of the list:");

scanf(“%.d”, &size);

printf["Enter any%d integer values :”,size);
for [i=0;<size;i++]
(i=0; i< size; i++)

scanf(“%d”, &list[i]);

printf("Enter the element to be Searched: ");
scanf("%d", sElement);

//Linear Search Logic
for (i=0;i<size;i++)

{
if (sElement==list [i])
{ _
printf(“Element is found at %d index",i);
break;
}
}
if(i==size)
~ printf(“Given element is not found in the list!!!”);
getch ();
}

BINARY SEARCH

Binary search algorithm finds given element in a list of elements with O(log n) timé
complexity where n is total number of elements in the list. The binary search algorithm can

be used with only sorted list of elements. That means, binary search can be used only Wi

list of elements which are already arranged in an order. The binary search can not be used for

list of elemlents which are in random order. This search process starts comparing of the sear
element with the middle element in the list. If both are matched, then the result is “eleme™

found”. Otherwise, we check whether the search element is smaller or larger than the midd!é

element in the list. If the search element is smaller, then we repeat the same process for X

sublist of the middle element. If the search element is larger, then we repeat the same pro‘-'es;
gearC
also

: for right sublist of the middle element. We repeat this process until we find the
el-eme‘nt in the list or until we left with a sublist of only one element. And if that element
~ dosen't match with the search element, then the result is “Element not found in the list”

‘Binary search is implemented using following steps :
% Step 1: Read the search element from the user.

% Step 2 : Find the middle element in the sorted list.
% Step 3 : Compare, the search element with the middle element in the sorted list-

E3

10



2 e

& Step 4 : If both are matching,
function.

< Step 5 : If both are not matching
larger than middle elemen.

% Step 8:Repeat the same
list contains only one element.

“ Step 9 : If that element also

doesn't match with the search element, then display |
“Element not found in the list!!!’

" and terminate the function.
Example

Consider the following list of elements and search element :
0 1 2 G G S 8
list | 10 55 | 65 | 80 | 99

Step 1 : search element (12) is compared with middle element (50)
0 1 2 g 4 5 6 7 8

list | 10 | 12| 20 | 32 | 50 [ 55 [ 65 | 80 | 99
12 |
Both t matching. And 12 is smaller than 50. So we search only in the left sublist (i.e.
Oth are not ma S
10,12, 20, & 32).

nt ( 12)

lement |
6 78

ddle e

list ‘ ;
12
Both are matching. So the.
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else if (listfmiddle= stlement]
printf[“Element found at j
break; ndex %d-\n",middle];

f.%lSt?
last= middle-1;
middle= (first +last)/2;

|
/

if (first > last)
printf(“Element Not found i i
cotchll in the list.”);
Hashing

Hashing is a techni
: : ique that is used to uni i i
“”mlfj" fI’bJECtS Some examples of how h.ashin.*;'qil;ellge:;l ?:22; ?‘ Spec'lﬁ‘lz (:;Dj“t Poula
* In universities, each student i i M oy
_ ) S ass i
rotriove infor i S igned a unique roll number that can be used to
% In libraries, each book i i rmi
_ ! is assigned a unique number th
= . : at can be used to i
s ormatlon about the book, such as its exact position in the library or th dete_ i
een issued to etc. i
I
n both these examples the students and books were hashed to a unique number

aSSiQSSUme that you have an object and you want to e
a key to it to make searching easy. To store Keys function hashes

t
d};iakesb; ’;Value pair, you can use a simple array like a —
diret]y E111cturfe where keys (integers) can be used ;
B S En index to store values. However, in cases A .
asap inde eys are large and cannot be used directly :
. ex, you should use hashing. :
eysr;,hashmg’ large keys are converted into small
Storeq yirl: sing hash functions. The values are then
ldea of 1 B d‘ata structure called hash table. The
Pairs) Un'E;'Shlng is to distribute entries (key/value
8SSigned iformly across an array. Each element is ‘ :
sing th a key (converted key). By using that key you can access the element in O (1) time.
e e key, the algorithm (hash function) computes an index that suggests where an entry
: ound or inserted. :
tored (inserted), searched, deleted
om a hashing function. in &

ich is obtained fr
which is called the Hash Table. A
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#SH COLLISION RESOLUTION TEcHqus

There are mainly two methods to ha
l. Separate Chaining
2. Open Addressing

ndle collision -

Open Hashing (Separate chaining)

Open Hashing, is a technji in whi :
index (k) of the HaeIA Raltth:- :rll ‘\\dP‘llC‘h.the data is not directly stored at the hash key
o the head of theldar T ATNNE. 1¢ data at the key index (k) in the hash table is a pointer
P Ak structure where the data is actually stored. In the most simple and
imp Hﬂéﬂtdt-l()ﬂ:i the data structure adopted for storing the element is a linedlflist.
[n this technique when a data needs to be searched, it might become necessary (worst
case) Lo traverse all the nodes in the linked list to retrieve the data. :

Keys buckets entries

000 | [x] ‘ ‘
: 001 1 > x| Lisa Smith | 521-8976 |
| John Smith W z
: - B [ John Smith | 521-1234 |
| Lisa Smith 151 | [x
2| [ 1
[ Sam Doe - 53 | [~ [x] Sandra Doe| 521-9655 |
Ao A X
[ Sandra Doe | ; I\‘M Tad Baker | 418-4165 |
253 | | X]
Tad Baker ' 54 3‘:\’5‘, Sam Do | 5215030 T
A“Or;?ler : ol ke each cell of hash table point to a linked list of records that have same
e idea is to make _
ha i g ; 3 _ofke S as 50, 700, 76,
S}IlJﬁ:nctlon v.z(ailuea i Gy function as ‘key mod 7" and sequence Y
et us consider
8 : . Led list of records that have same
. ?1,2}; %10k to make each cell of hash table point to g.nykeé
e idea is tom ‘ L ‘and sequence of keys as 50, 700, 76,

hash function value. oo 7"ke 0d 7
simple hash functlon 36 - ;ﬂ mg :

- Let us consider a
&5, 92, 73, 101'

sfaaf'ﬁdf A

IR T el
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0 0 0 700 0 700
1 1 50 1 50 1 50
2 2 2 2 .
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 76 6 76
Initial Empty Table Initial 50 Insert 700 and 76 Insert 85 : Collision
Occurs, add to chain
0 700 0 700
U T B gt B 1 s -
2 2
3 3| 73 ol 01|
? 4
6 76 6 76
Insert 92 Collision Insert 73 and 101

Occurs, add to chain
Note that the order in which the data is stored in each of these linked lists (or other data
structures) is completely based on implementation requirements. Some of the popular criteria

are insertion order, frequency of access etc.

CLOSED HASHING (OPEN ADDRESSING)

In open addressing, instead of in linked lists, all entry records are stored in
itself. When a new entry has to be inserted, the hash index of the hashed value is
and then the array is examined (starting with the hashed index). If the slot at the
index is unoccupied, then the entry record is inserted in slot at the hashed i
proceeds in some probe sequence until it finds an unoccupied slot.

The probe sequence is the sequence that is followed while traversing thro
different probe sequences, you can have different intervals between successi
probes.

When searching for an entry, the array is scanned in the same sequen
target element is found or an unused slot is found. This indicates that there i

the table. _ : _
The name “open addressing” refers to the fact that the location or .

not determined by its hash value. ;
Linear probing is when the interval between successive probes is |
assume that the hashed index for a particular entry is index. The pr«
probing will be : : 3
index = index % hash Table Size



index= (index + 1) % hash Table Size

index = (index + 2) % hash Table Size

index = (index + 3) % hash Table Size

Hnd SO on...

For which one of the following techni
1. Linear Probing (this is probe to
2. Quadratic probing.

3. Double hashing (in short in ¢

ques is adopted :
clustering of datas Some other constrains,

actually be stored).

Hash Table

Tutorial

Code Monk
. ‘Hashing
EEErEM HackerEarlh

Hash collision is resolved by open addressing with linear probing.
Since CodeMonk and Hashing are hashed to the same index i.e., 2,
store Hashing at 3 as the interval between successive probes is 1.

Advantages :

I Simple to implement.

2. Hash table never fills up, we can always add more elements t?.“:ham; hain.
3. Less sensitive to the hash function or load factors. i

4. 1t is mostly used when it is unknown how many and how frequ ‘
inserted or deleted. ‘

1. Cache performance of chaining is not good as 1k9y§
addressing provides better cache performance as eve

2. Wastage of Space (Some Parts of hash t&hlﬁa,‘ ‘.

3. If the chain becomes long, then search time can

4. Uses extra space for links.

A comparative analysis of Closed Hs
Oy

All elements would be s

table itself. No additi
Needed,
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= : Simple and effective approach to collision
In cases of collisions, a unique hash key resorl)ution. Key may or may not be unique,

must be obtained. : :
ize of the hash table, Performance deterioration of closed
1 all the data is|addressing much slower as compared to

Open addressing.

No state data needs to be maintained
(easier to maintain)

Determining S ‘
adequate enough for storing

difficult.
State needs be maintained for the data
(additional work)

Expensive on space

Uses space efficiently

Symbol Table in Compiler

Prerequisite : Phases of a Compiler.

Symbol Table is an important data structure created and maintained by the compiler in
order to keep track of semantics of variable i.e. it stores information about scope and binding
information about names, information about instance of various entities such as variable and
function names, classes, objects, etc.

«# It is built in lexical and syntax analysis phases.
The information is collected by the analysis phases of compiler and is used by synthesis
phases of compiler to generate code.
It is used by compiler to achieve compile time efficiency.
It is used by various phases of compiler as follows :
Lexical Analysis : Creates new table entries in the table, example like entries about
token.
2. Syntax Analysis : Adds information regarding attribute type, scope, dimension, line
of reference, uses, etc. in the table.

3. Semantic Analysis : Uses available information in the table to check for semantics
i.e. to verify that expressions and assignments are semantically correct (type checking)
and update it accordingly.

4. Intermediate Code generation : Refers symbol table for knowing how much and
what type of run-time is allocated and table helps in adding temporary variable

-
o

(SR
.

information.
5. Code Optimization : Uses information present in symbol table for machine
dependent optimization. s vhine

6. Target Code generation : Generates code by using address information of ide T er
present in the table. He e

Symbol Table entries : Each entry in symbol table is associated with attri
Support compiler in different phases. ; 0

Items stored in Symbol table :
% Variable names and constants
% Procedure and function names
% Literal constants and strings
% Compiler generated temporaries 4
% Labels in source languages

Information used by compiler from Symbol table :




!’;]; _,..‘ (]
set_attributes st

get_attribute

1. List :

% A pointer
added in thg
% To search fo
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97 = 4, level 2 W 4 Node 211
93 =8, level 3 W 8 Node 2|

0 G Level 1
o e o e Levlel 2

Complete binary tree

Binary tree

Figure 1 ¥ TR Nodes | @ Figure 2 ¥ Node
2" 93 % AR B ; : 2" % ITER &
Extended Binary Tree |

"% Binary tree, Extended Binary tree 78 Fea # 4f% & node frgat degree (subtree)
003=) & = = degree (subtree) 2 1l 39 Tree ¥ f5g subtree #1 degree 0 gt & Sg=T External
Node 3 e} degree 1 €t & S Internal Node #ed & External Node #! squares ik

internal node 1 circles % ®9 ¥ represent #d &1 : Gilbod 0@
T fr 7w W T tree for1 741 8 3899 AR Node internal € 59 tree &1 Extended Binary 7&f
¥ Extended Binary tree ® convert &1 % fou frg node F1 degree 1 T external node

add w4y et rectangle ¥ represent fepan T g1

BC |
7 Extended Binary €€ ™

! : gtermmologiq;@
DY Tree “@M !

e ten_n'inolqgies' f

i =

I Twnn data SETUCE
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;. Non-terminal Node : Tree & )

subtree 1899 B, UQ node F1 Non-termi alnode%r;e-gﬁ (O)Wﬁmm.#qﬁg
34 fF Fig. 1% A, B, C Non-term:

-2
-
=2
5
m
n
o+
-
@
@
k-
=
=
&
C

79 node % Siblings FEA, T fF B
Siblings %, Node B F|

8. Level : Tree data structure & TR gata items,

: ¢ level % 31qwR # represent g4 ¥, 39
1 —H9H T2 level ¥4 (0) &1 ® Wi W FTe TF node I 21 39 node F1 Root node FEd

7l 3% subtree level 1 W T TaF level 1 ¥ subtree level 2 | 38 YFR tree
Hierarchical 71 T&dl 81 SR f 2T ™ Fig, 1% % 3 level (0, 1, ik 2)
9. Edge : f&di Tree%WZnodesﬁmﬁmwﬁﬁmwmm?fﬁwﬁ
&l edge Fed Bl T ©MEA, directional 3R non-directional 214l ¥R Y & Hehdl 21
10. Path : {5l Tree 1 T% node § T8 node W I % for 7 edge F1 i #d € 39 edg;:
sequential collection ®! Path F&d €, 51 f fig. 1% A ¥ F 7% 91 £, @ &l (A¥ B) |
fF (B | F) 9 S|
HFE — (AW B),(BHF)
11. Depth : & Tree =1 S level & 2 9% level 39 tree Hv'faﬁDepth 23;'3' 21 3 =1 3|
) . , S—feu M figure 1 H tree i depth 2%l
tree %1 height i &1 STl 2 ¥ S el ML e
12. F t - fit fou T4 tree FI root node H T _
. Forest : e 3| = YW TE tree, forest § TG S 2l
subtree 31 subtrees ¥ siel Sl | ¥6

5

Fig. 1

t DX W 27 .
resen 3% ZR reporesent g&d €1 4 methods

e
" 3. Binary tree @I ) FER 9 a;[‘ ; 2
SWT—Binary tree data structure
B v 3 ¢
L. Array Representation

es Pl 8
1. Array Representation : Binary tree 'ai(nqt;_ ol
S 2y Arrayﬁ store &L node H1 THF o 95 Th quue-Dw :
array %1 index 0 (=) 8 »gE e § 3 (mze ,. _

2 i resentation
2fapked 15 Rep 3 % feTq array 1 ¥4 fan
. g Wl ®1 ‘C’ language &
-’ti-eea? node i 0
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present f&a1 Sl 21 299 Root node #H Index 0 W Ao 3

i - Maxsize-1) @ re ¢ : S
w @ 7% T (Ma ht child % &4 A store Bl

THF aTQ ¥ node, left child 41 rig

Example : 0
®' (©?

Array % BRI 29 Binary tree (BT) %1 1 Y& # represent #%d &:
L& | Baligd
BT(0) BT(1) BT(2)
781 9T A, B 3 C &1 parent node (Root node) & B, Root node A &7 left child & 3R C, Root
node A 1 right child 2l

Example :

¥ tree 1 Array ¥ 19 y#1 9§ represent F{d g—
e T o T e o i
BT(0) BT(1) BT(2) BT(3) BT(4) BT(5) BT(6)

2. Linked list Representation : f#% Bina '
- ry tree &% nodes FI linked 1i Ll
represent %14 % feft_double linked T ¥4 f s 21 & node % 31y a{; ;eldlss;:éfq

(1) Left child Address (2) Data | (3) Right child Address

::;i; Wﬁ;ﬁ?ﬁ-{ﬁeld, Left ch.ild % Address #' store FA@ 2, second field, Actual Data %1 store
T field, right child % Address I store FH & U use fran s 2

Example ;
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74 Binary tree &1 linked list & gmy =y q represent faay #
; en ST 8—
A

B

E/IDQ |- 15 G E‘ED
VT - K

A f5 Binary tree #1 liked list 3% 81 represent FA & @ FW &3 T 7% 1 € w@m
FTAT B0

H¥T 4. Binary tree traversal 1 g1 27 A e woR & 218 &

STT—Tree traversal, tree data structure %1 % common operation & 7% ZRT tree & Wi
elements ® &5 ¥ F7 T dR §&L visit HET B (399 R nodes T&T display T e
Binary tree % node f¥® WX display €1 7% traversal method W s & 21

FE—Binary tree % ¥ nodes FI display AT A visit FT, Binary tree traversal F&edl
71 Tel W A TR & Binary tree traversals 14 8—

1. In-order traversal 3. Post-order traversal

2. Pre-order traversal
ELSIBC LS % traversal, non-empty binary tree o & foean s gehar %I ‘
1. In-order Traversal : 39 JF1 & Traversal § Tod 9gdl tree I left subtree, T Root

W =19 H right subtree F! visit a1 ST 21 $9H T node W4 TF subtree TN 1 1 fFi—
Root node

Left subtree

=gy Had 9E left subtree B visit 2, fT root node A 3K 31 & right subtree C visit &I
Za Example :

Root







Treesm Qsj

s/ left subtree ®1 Traverse 14 % a2 Right subtree ! 38 ¥R fa@i—
o Root node

0 Right subtree
Left subtree

O

Left subtree 1 node G root node %, T 39! 39 Th 0 feram

9 traverse L1 W G F left subtree 78 # @@ Root node G #I traverse %7, fFT K right
subtree Tl 319 tree 1 TH FHR forai—

G B o

Root node

Left suptree ( l,D;J,g'F

In-order Traversal :
LB JrBEgAs G K C H
————————"' M‘; nght subtree




A
|

168t = Data Structure Using C

node A %1 B 3R C m; left 31 right subtree #1 Left subtree I traverse v
Root node T ( T :
T 0 Root node

Left subtree

B, D nodes ST« 21, fiT tree ¥9 W represent F—

¥ I ,,'-'f';‘nﬁ-‘
Right subtree

¥4 9% Pre-order travel-sal"cR node 39 TR Ei—
- A : A, B, DG B IR

Pre-order Algorithm | A2

1. Visit the root (W& Y&el root node visit FT3 2).

, 2, Traverse the left subtree (f%T left subtree visit @) '

Traverse the right subtree (3 3 % right subtree visit HAA)

er Traversal e

: "Tsﬁ Left subtree,_ ﬁb‘( right subtree. 3ﬁT o= o "‘i'oot node



Right subtree &1 Pogt- b o0

24 9% Post-order traversa] % node 38 YR visit E’ﬁ—‘:
D,B,E,F,C,A
Algorithm post-order Traverse -

1. Traverse the left subtree (T left subtree visit F)

2. Traverse the right subtree (fis right subtree visit #7)
3. Visit root node. (3% 379 o Root node visit F17)

W¥ 5. B-Tree W féra ool #ffiw)

3Y{—B-Tree : B-Tree #1 balanced tree a1 balanced M-way tree “il el Sl 2| Binary
search tree, AVL tree, Red-black tree 30Ifg W4t #t %ae TF key value 2t & 3 maximum a1
nodes (children) & € af% B-Tree ¥ node T & S&1 Key value store B § 31t 360% & @
€ (children) node &4 €1 B-Tree &1 1801 1972 % Bayer X Mc Creight I fiFa1 o1 fge 7@
Height Balanced M-way search tree T@1 71| 916 H $H& A9 B-Tree X fean m

B-Tree ¥ f= fagiyan £—
1. g4t Leaf (Terminal) nodes T% & level ™ g =fgw) |
9. Tt node H, root node 1 BTEHY FH & FH [m / 2 - 1] keys Sﬂ?mﬂmm ~1keys &l
3. Tt non-leaf node, root node I BIFHT Hi & Y H m/2 child B
4. Node % 9 key values, Ascending order T g =ifeu)

Example : B-Tree of order 4 contains maximum 3 key values in a node and maximum 4

children for a node.

[TeT7][5[21]23)

ye 6. B-Tree T & amel operati
37— 1. Addition : B-Tree | ?’Fﬁ
S 21 At keyqﬁﬁﬁﬁﬁﬁnod;r@m%
iz 3 21 =8 key forEH =
feorm T keys 31 St &1 :
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qﬁkey“ﬁmﬁ@%i

AT delete # : -
key noed: .; - 1_.:2? ;a;:;?y % Terminal (leaf) & fo#! delete T Tl & HYiq Faa 39

mzj;f delete &1 ST arcf) key T terminal (leaf) 781 # @ 30 T0% SﬁCCESSOF % WA | wee fe ‘
¥ ¥R A successor, terminal node ¥ € A =&l § ae delete ¥ faan ST

successor, non-terminal node ¥ '3 4 THHI successor, replace g 3R 78 9t
% g «ff T

A & Al AET ST € Sl F H, node u ﬁ c?eleteﬂﬂi'"?ll E B
Fﬂh ot Wooo d et &9 hoi 98 rwort Snaisia §10m

ok ‘*' * yas and ban swpiey fgﬁf;@ :ﬁlag-?:g:ﬁ; o







non-empty left sul
node in a binary







hinary search tree. SIX (6) numbers are inserted in orde

40, 60, 50, 33, 55, 11

| @
@®®
& ® ®

1 —
(1) ITEM = 40 (2) ITEM = 60 (3) ITEM = 50 (4) ITEM = 33

(5) ITEM = 55 (6) ITEM = 11

Binary Search Tree

A binary search tree is

satisfies the following rules :

1. The value of the key in the left child or left subtree is less
than the value of the root. . |

9. The value of the key in the right child or right subtree is
more than or equal to the value of the .root.

3. All the subtrees of the left and right children observe the

two rules.
Figure shows a binary d

a binary tree which is either empty or

ata structure observing the above

three rules. The number 7 is the root node oféthedb::gsz:; eI:

has two sub-trees, the left subtree with node .anl ower than the

with node 9. The value of left subtree node is el

value of th ' oot and the value of the right subtree node s higher than the value of the root,
ue of the roo

Binary search Trees
and suppose an ITEM of information

ds the location of ITEM in the binary search tree T, oy iy,
n :
priate place in the fre€:

A8

is given. The

i
Suppose 1 1 sert ITEM ag |

following algorithm fi
a new node in its appro







and right sul
before visitin;

t

traversed in
root node is
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3. Degree of a node : It is the number of subtrees to a node in a given tree. In the Eivel

tree,
The degree of a node A is 3
The degree of a node B is 2
The degree of a node C is 1
The degree of a node His 0
The degree of a node Iis 3
4. Degree of a tree : It is the maximum degr
the node A has degree 3 and another node I is also having its degree 3. In
maximum. So the degree of the above tree is 3.
5. Terminal node : A node with degree zero (0) is called a terminal node or a leaf noge,
In the above tree, there are 7 (seven) terminal nodes. They are E, J, G, H, K, L and M.
6. Non-terminal node : Any node (except the root node) whose degree is not zero jg
called non-terminal node. Non-terminal nodes are the intermediate nodes in traversing the
given tree from its root node to the terminal nodes (leaves). There are five (5) non-terminal
nodes (B, C, D, F and I)

7. Siblings : The children nodes of a given Parent node are called Siblings. They are also
called brothers. In the above tree,

E and F are siblings of Parent node B.

K, L and M are siblings of Parent node I,

8. Level : The entire tree structure is levelled in such a way that the root node is always
at level 0. Then, its immediate children are at level 1 and their immediate children are at
level 2 and so on up to the terminal nodes. In general, if a node is at level n, then its children
will be at level n + 1. In the above tree, the level is 4.

9. Edge : It is a connecting line of two nodes, that is, the line drawn from one node to

another node is called an edge. :
10. Path : It is a sequence of consecutive edges from the source node to the destination

node. In the above tree, the Path between A and J is given by the node Pairs.
(A, B), (B, F) and (F, J)

11. Depth : It is the maximum level of any node in a given tree. In the above tree, the root
node A has the maximum level. That is, the number of levels one can descend the tree from its
root to the terminal nodes (leaves). This term height is also used to denote the depth.

12. Forest : It is a set of disjoint trees. In a given trees if you remove its root node, then it
becomes a forest. In the above tree, there is forest with three trees.

@ O.

5 »,
RS o

ee in a given tree. In the given/above treq
all this value ig the

©) 000

e, .
L ‘ Forest
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% Data

% Left chilg
* Right chilg
The data fie
address of its le

1 r
ftd htc)llds the value to be given. The left child is a link field which containg
node and the right child contains the address of the right node. 2

Left child | Data | Right child

Consider the following binary tree :

Complete binary tree

A binary tree is said to be a cemplete binary tree if all the leaf nodes of the tree are gt
same level. Thus, the tree has maximum number of nodes at all the levels. For example,

“at any level n of binary tree, there can be at the most 2" nodes, that is :
- At n =0, there can be at most 2°=1 node
i <l 1, there can be at most 2! =2 nodes
n = 2, there can be at most 2* =4 nodes

-

At leﬁel n, there can be at most 2" nodes.
Extended Binary tree | 8T
¥ A binary tree T is said to be a 2:tree or an extended binary tree if each node N
ti or 2 children. In such a case, the nodes with 2 children are called internal nodes an
1 0 ck ! - ] ezitemal node. Sometimes the nodes are distinguished in g
- by using circles for intefnﬂ@%les and squares for external nodes.

has either{
d the node®
jagr ams







: |
599 1. Graph 1 22 §9& faftr=1 terminologies 1 av Fifse iy
IW—Graph : Graph T% non-linear Data sturcture HIEIRS s nodes 7 vertices
collection 3K TH edges & collection § = gaN figure, BY a£1 dl 5_@ l ;;%’Dﬁt zsﬁt of
vertices 3 set of edges %1 Graph o 5 ;Ni%l = ata Stflre
F4 ¥ foau use foFan Sal 2 31 edges nt fhgl al vertex &1 Eiks
¥ fu use foan S &1
Example :

Fa 21 Vertices/nodes
I E ¥ represe

g fa3 & 311 0% undirected Graph #1 29t (Represent) T & fSH vertices & nodes f=
#A,B,C,D 3RE.

V (G) = (A’ B’ C’ D; E)

- Edgesof Graph
. E(G)=((A, B), (B, D), (D, C), (C, A), (A, D), (B, ), (D, E))
T ¢ Bdge A st 530 S e 8 (4, ) 1R 2
g 914 arht geit Edges‘q'( of Wlﬁ'cﬁ 21 ZHifelT I Graph, undirected Graphﬂ?ﬂa'“

s
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-313 zg Table 7 list & &9 % zg g% Represent FHIT—

5 iy 0 I

o

X

wed 3. Graph traversal @1 g &2 A faa TEY ¥ A &?
e ¥ Tuftdd | nodesﬂﬁﬂ@mqmaﬂmvisit

Iat—Traversal means Graph &1 Tre
91 SN Graph % & vertex &1 T SR visit ST Graph traversal €I 21 Graph traversa]
3 o < SR % T o e
1. Breadth First Search (B F S)

2 Depth First Search (D F S)
1. Breath First Search (B F §) : 51 5 T & & Wl =iet @1 ¢ o 70 &% H nodes #

Sreré @ Visit HET ) B F S i T8a 29 start vertex il THE vertices i visit 4 € 3 R w7

T4t unvisited vertices 1 visit T &l
‘= FFR o G WEE Vertices F1 visit {1 < 21 B F S % fom frfafea Algorithm 3

o 4 @ e—
Status 1 = Ready
Status 2 = Waiting
Status 3 = Process

Step 1 : Graph %! ¥4l nodes ! visit % faIq TR W1 (status 1)
| step 4 Start Vertex A F Queue ﬁ AR THH status waiting i (status 2)
tep 3 : Step 4 & Step 5 7% BT & TF Queue Wiell 7 B WY
- Step4: Queue F TEeHl node n F' Queue F remove FH n F process F 2 (status I
Queue ek n.%i?ﬂﬂ Adjacent vertices = f Ready state | %, 1 T ol (status J










7177w

o|w >
Q|H |

=
o
=

HA st
art vertex § stack H gre7 ¥
|

_,/

~ Visited node #t gy stack & 4 form
b Adjacent nodes #I stack ¥ =@ 2

A

K & YA: Top of the stack 1 st
i ack ¥ STET Freeret 39 Adj . .
% 3 HA e 5+ q% stack @e A1 & S e s

ACEFD ACEFDB

aph DFS# 2 : A,C,E,F, D, B

s where some pairs of objects are

of a set of object
termed as vertices,

is a pictorial representation
ects are represented by points

links. The interconnected obj
hat connect the vertices are called edges.

agraphisa pair of sets (V, E), where V is the set of vertices and E is the set of
k the pairs of vertices. Take @ look at the follqm graph :

@ =
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a b

In the above graph,

V ={a,b,c,d, e}
E ={ab, ac, bd, cd, de}

Graph Data Structure

Mathematical graphs can be represented in data
struf:ture. We can represent a graph using an array of
vertices and a two-dimensional array of edges. Before we

proceed further, let's familiarize ourselves with some
important terms :

% Vertex : Each node of the graph is represented as a
vertex. In the following example, the labelled circle
represent vertices. Thus, A to G are vertices. We can
represent them using an array as shown in the
following image. Here A can be identified by index 0, B
can be identified using index 1 and so on.

< Edge : Edge represents a path between two vertices
or a line between two vertices. In the following
example, the lines from A to B, B to C, and so on represent edges. We can use a
two-dimensional array to represent an array as shown in the following image. Here AB
can be represented as 1 at row 0, column 1, BC as 1 at row 1, column 2 and so on,

keeping other combinations as 0.

% Adjacency : Two nodes or vertices are adjacent if they are connected to each other
through an edge. In the following example, B is adjacent to A, C is adjacent to B, and so0
on.

% Path : Path represents a sequence of edges between the two vertices. In the following
example, ABCD represents a path from A to D.

Graph Terminology

We use the following terms in graph data structure :

Vertex '

RIS 2. ; ) S
il A‘Il"mdlmdual data element of a graph is called as Vertex. Vertex is also known &
In above example graph, A, B, C, D & E are known as vertices.

f.i'ﬁ }i.-’ H (

node.

5
e o : — , : _ An edge’
. An edge is a connecting link between two vertices. Edge is also known as £ pe link

‘ | .
represented as (starting Vertex, ending Vertex). For example, in above grap



l
‘ A i
| 3 graph with on]y, Undirected edges is saiq . _

i Directed G raph 1d to be undirected graph.
|

‘A graph with only 4
Y directeq is cnn :
\xed Graph edges is said to be directed graph.

.{ The two vertices Joined by an edge are called the end ve

- rtices (or endpoints) of the edge.
rigin

[If an edge is directed, its first endpoint is said to be origin of it.
ation

an ed/ge is directed, its first endpoint is said to be origin of it and the other endpoint is
be the destination of the edge.

here is an edge between vertices A and B, then both A and B are said to be adjacent. In
vrds two vertices A and B are said to be adjacent if there is an edge whose end

, is said to be incident on a vertex if the vertex is one of the endpoints of that edge.
ei ,

Edge

ed edge is said to be outgoing edge on its origin vertex.

dee is said to be incoming edge on its destination vertex.
d edge i

rtex is said to be degree of that vertex.

er of edges connected to a ve

2 . | ‘ V |
. . ; . |
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Outdegree
Total number of outgoing edges connected to a vertex is said to be outde

vertex.
Parallel edges or Multiple edges

If there are two undirected edges to have the same end vertices, and for
edges to have the same origin and the same destination. Such edges are calleq p
or multiple edges.

Self-loop
An edge (undirected or directed) is a self-loop if its two endpoints coincide.

gree of that

two dil‘ected
arallel eqgeg

Simple Graph
A graph is said to be simple if there are no parallel and self-loop edges.
Path

A path is a sequence of alternating vertices and edges that starts at a vertex and ends ata
vertex such that each edge is incident to its predecessor and successor vertex.

Graph Representations

Graph data structure is represented using following representations :
1. Adjacency Matrix

2. Incidence Matrix

3. Adjacency List

Adjacency Matrix
In this representation, graph can be represented using a matrix of size total number of
vertices by total number of vertices. That means if a graph with 4 vertices can be represented
using a matrix of 4 x 4 class. In this matrix, rows and columns both represent vertices. This
matrix is filled with either 1 or 0. Here, 1 represents thzre is an edge from row vertex o
column vertex and 0 represents there is no edge from row vertex to column vertex.

For example, consider the following undirected graph representation :

o - o = o

m oS0 W >
S =) hea  =A DO
= R Y — ™ 3
o = O O =
SrqUE TR 0 G T S








































