DATABASE SYSTEM CONCEPT
AND DATA MODELING

1.1. INTRODUCTION

DBMS ([t)v;“Sa B“S(_’dM“":“g(i“E".“ System) is a software, which is used to create and maintain the
database. DBMS provides the facility to its users ang programmers to create, manage and update the
data with a systcmatic way.

Examples of DBMS : MySQL, Postgre SQL, Microsoft Access, Oracle etc.
A database is a collection of inter-related dat
data. It is also used to organize data in the form

For example : Database organizes data

a that is used to cfficiently access, insert, and delete
f Table, Schema, View and Report etc.

about Admin, Staff, Students and Faculty etc.
According t(? DBMS sof‘th}rc engineering, Data Modecling is a process in which a logical model
of data storage i.e. a diagram is prepared, so that according to this logical model the data can be
stored in the database.

Data modeling is the first and most im
every aspect related to the database: Such

will be used by the application or system,
data will be processed.

portant step in the database coding process. It explains
as how the data will be stored in the database, what data
how different types of data will be connected and how the

That is, through Data Modeling, the complex design of the database can be understood in the

form of a simple diagram and it can be ascertained that what type of final system will be after
implementation and how it will work.

For example, the way the architect designs the house before building it, what kind of house it
will look like, how many rooms it will have, where the bathroom will be. where the stairs will be,
how to go to the terrace, etc.; So he designs all this in advance and starts working according to the

design made after the consent of the landlord.
B 1.11. Advantages of Data Modeling

¢ Data modeling can be said to be the foundation of database development. It makes it easier

for developers, data architects, and business analysts to understand the interrelationships of
data within a database.

¢ Through this, the data storage system can be planned before development, and the storage
- design can be understood.

L Having a better database model increases the efficiency of the database.

¢ Data mapping can be simplified by creating a better database model, so that data can be
easily accessed and used.

ystem
ata modeling, work is

y development. In d
n remains strong.

2 | Database Management S

e most important part of an .
hich its documentatio

ner, duc to w
| errors are detected before development, due to

& Documentation is th

done in 8 systematic man)

rking according to the d_ata_ mode

¢ Bl)llic::lothe dgevclopment cost is significantly reduced. '

1“;' gh Data Modeling, the complexity of the database and data processing can be
¢ Throu s

estimated in advance.
n of programs through

B 1.1.2. Basic Concepts , |
atabase Management System. It is a collectio
s used to manage the

The full name of DBMS is D . ctior
which users can create, delete and manage databases. It is a software which i

database.
B 1.1.3. Database Management System

Database management system is a software, which is used to manage the database.
For example, MySQL, Oracle etc. are very popular commercial databases which are used in

various applications.
DBMS provides interface to create database, store data, update data, create tables in database
and perform various operations.
maintains data consistency.

It provides security to the database. In case of multiple users, it also
DBMS allows users the following tasks

Data definition :
database.

for various purposes.

It is used for insertion, modification and deletion of actual data in the

Data Update : It is used to retrieve data from the database, which can be used by applications

Data Retrieval : It is used to retrieve data from the database, which can be used by applications

for various purposes.

User A.dministration : It is used to register and monitor users, maintain data integrity, enforce
data security, deal with concurrency control, monitor performance, and recover information

corrupted from unexpected failure.

- W 1.1.4. Characteristics of DBMS
It uses a digital repository established on a server to store and manage information.

DBMS includes automatic backup and recovery process.
It has ACID properties which maintain data in a healthy state in case of failure.
It f:an reduce.the complex relationship between the data.
It ?s used to support manipulation and processing of data.
It is used to provide security of the data.
It can vi i i
o :::w the database from different view points as per the requirements of the user.
. supporrt: an‘i éylpi;: of data. Real word can store any type of data it can store

S roperties. |
Durability, prop: ACID means-Accuracy, Completeness, Isolation
% Through the da

gh tabase system, many users can access the database at the same time

P L e e e

and

Da
labase System Concept and Data Modeling i3
& Data can be shared through this

& There is sccurity in it ;¢ NO unauthorize user
¢ If for some rcason the database get
& The biggest feature of DBMS i th
& Can share data in DBMS,

& The processing speed is good in DBMS.

¢ Another feature of DBMS is tha it is data independent

&
%*
s 1.1.5 Advantages of DBMS !

tan access i,
s deleted or corrupt, then we

can take a backup of i
at data redund

ancy can be controlled in gt

& Controls database redundancy .
single file and that data is kept in t

& Data Sharing : In DBMS, it i .
organization. It 1s easy to share data among the authorized users of an

¢ Easily Maintenance :
of the system.

¢ Reduce Time : It reduces develo

It can control data

redundancy as it stores all the data in a
he database.

This databage can be easily maintained due to the centralized nature

Pment time and maintenance requirement.

¢ Backup : It provides backup and Te€Covery subsystems that create automatic backup of data
from hardware and software fajjyre and restore.

ry Multiple user ‘mtgrfaces : It provides different types of user interface like Graphical user
interface, Application program interface.

¢ Data Consistency : By controlling data redundancy, data consistency is achieved.
the same type of data is prevented from being stored repeatedly in the database.

¢ Integration of Data : In DBMS, the data in the database is stored in tables. A database
consists of more than one table; And relationships can be created between tables (or related
data entities). This makes it easy to retrieve and update data.

4 Data Security : The data in DBMS is completely controlled by the Database Administrator
and the Database Administrator only ensures that which user is to be given or not to access
how many parts of the database; This greatly increases the security of the database.

% Data atomicity is very important. In DBMS, it is taken care of that the transaction should
always be complete. If a transaction is incomplete then it is rolled back. like: If money is
deducted from the account while booking ticket online and the ticket is not booked then the
money should be refunded automatically.

% Due to DBMS, application development also takes very less time.

M 1.1.6. Disadvantages of DBMS .
% Cost of Hardware and Software : A high speed data processor and large memory size is
required to run the DBMS software. o
% Size : It occupies a large space of disk and memory to run them efficiently.

% Higher impact of failure : Failure has a high impact on the database because in most of the
organizations all the data is stored in a single database and if the database gets damaged due
to power failure or database corruption then the data can be lost forever.

Meaning,

Wﬁ‘mw

4 || Database Management System

¢ Staffs like DBA, application programmer,

for this. R e g

& DBMS is very large software,

B 1.1.7. Applications of DBMS

1. Railway Reservation system : In railway reservation system, database is required to store the

records or data of ticket booking, status about train arrival and departure. Apart from this, if the
trains get late, then people get to know about it through database updates.

2. Library Management System : There are many books in the library; It is difficult to store

the records of all the books in one register or copy. Therefore, a database management system

(DBMS) is used to maintain all the information related to the name of the book, the availability of

the book and its author.
3. Banking : Database Management System is used to store the transaction information of the
customer in the database.

4. Education Sector : At present, examinations are conducted online by many colleges and
universities. They manage all the exam data through Database Management System (DBMS). Ensure
that all information like student’s registration details, grades, courses, fees, attendance, results etc. is

stored in the database.
5. Credit Card Transactions : Database management system is used fo
card and monthly statements.

operators are needed and they need 1o be trained 3

so it requires more memory in the system to run efficiently.

r generation of credit

Railway
Reservation
System

Airline
Reservation
System

Library
Management
System

Manufacturing

Human
Resource
Management

Banking

Applications of
DBMS
Education
Sector

Online
Shopping

Credit Card
Transaction

Social Media
Sites

Telecommuni-
cation

Fig. 1.1 : Applications of DBMS

6. Social Media Sites : We all use social media websites to connect with friends and share ou
thoughts with the world. Millions of people visit these social media accounts every day; Like signing

| Database System Concept and Data Modeling | 5
for Pinterest, Facebook, Twitte, and

] : ! Googl i
ol the information of the users jg Stored in thg ;al:;z:sx
7. Telecommunications ; Without DBMg no tel
tem is necess
anagement sys ary for these ¢ i
;:the AP Ompanies to

8. Finance : Database mang

th the use of database management system,
nd we are able to connect with other people.

ecom company can think of. A database
store call details and monthly postpaid bills

gement System

ent : Many workers or employees work in lar i
. . ; ge companies or
companies; They store the informat; dt :
Database Management System (DBMS), Ty and tax of the employee with the help of
11. Manufacturing : Manufacturi
on a daily basis. To keep the informat
Supply Chain Management, Database

g companies manufacture a variety of products and sell them
1on of your products like; Billing,

reey geément system to store the records of departure, arrival and
delay status of flights.

1.2. ADVANTAGES OF A DBMS OVER FILE PROCESSING SYSTEM

Database is important, because it is on]
and systematic manner. Along with this,
management systems (DBMS) can manage

single software application, thereby increasi
time costs.

y through this that the data can be managed in a correct
it allows the user to perform many tasks. Database
and organize large amounts of information within a
ng the efficiency of business operations and reducing

Along with this, the database management system has greatly benefited the business and large
organization, as they use it to store many types of data. Today we use this system to manage data

~such as employee records, accounting, library books, student information, project management and
inventory etc.

When we do this kind of work manually, it takes much more time than with database. Rather,
once the record is created, then you cannot change it easily and it cannot be accessed by everyone.
On the contrary, the data stored in the database can be accessed by other users anywhere. So overall,

in today's era database is very important, without it data management is very difficult and time
consuming task.

DBMS File System
ODBMSl is a collection of data. In DBMS, the user| e File system is a collection of data. In this system,
is not required to write procedures. the user has to write procedures to manage the
database.

' M. & ptigaany “?g;:,;{”.% #
* « DBMS takes care of concurrent access to data by| e In file systems, concurrent access has several

using some kind of locking. mmmmmuﬁhw
deleting other information or updating some
information. i oo e
e [t is suitable for multiple users. o It is suitable for single user.
e It provides high data consistency. For this, o There is data inconsistency in this.

normalization is used in it.
e There is very little duplicate data in DBMS, that| ¢ Data redundancy is very high in file system.

is, there is very little data redundancy in it.
Example : MySQL, MSSQL, Oracle, DB2 etc. Example : NTFS, Ext etc.

1.3. DATA ABSTRACTION

Database systems are made up
database, developers hide internal i
details from the user is called data abstraction. Data a
details (such as how data is stored and maintained) from the user.
system is to provide users with an abstract view of the system.

of complex data structures. To ease user interaction with the
rrelevant details from users. This process of hiding irrelevant
bstraction is a process of hiding implementation
The main purpose of a database

View 1 View 2 View n

ok

Logical level

Physical level

Fig. 1.2 : Three levels of data abstraction

We have three Levels of Abstraction

Physical level : This is the lowest level of data abstraction. It tells how the data is actually
stored in the database. You can get into complex data structure details at this level.

% & Lowest level of abstraction.
& It describes how the data is stored.
% Complex low-level data structures are described in detail.

ghest leve]

Highest level of abstraction: 1. TP s Lislof by o - Gulel
4 Exposes only part of the database B '
«# There can be many different view
) Em‘e . Let,s say we are Storin i
£ customer inf ion i
el, these records can be : Ormation in the Custo i
lev . E s stored in memory as blocks (b Lustomers table. At the physical
details are often hidden from the programmer ytes, gigabytes, terabytes, etc.). These
At the logical level these records ¢ .
RO a ' :
their relationship among each other can 11: Pe described as fields and attibutes with their data types,

e im :
level, because they are aware of such things abl:l::n:;:e:a::gst:tl:;sﬁogmmmers usually work at this
View level, the user interacts with the system only with the help of GUI 2
the screen, they are not aware of how the dat po and enters the details on

B idden from them. a 1s stored and whether the data is stored; Such details

1.4. DATABASE LANGUAGES

% A DBMS consists of appropriate lan
and updates.

% Database languages can be used to read, store, and update data in a database.
B 14.1. Types of Database Language

B 1.4.1.1. Data Definition Language

% DDL stands for Data Definition Language. It is used to define the database structure or
pattern.

to users at a particular point in fime,
s of a database,

guages and interfaces for expressing database queries

(SQL Language Statements j

|
DL TCL

K—_J_ﬁ

DML DOL
SELECT CREATE GRANT BEGIN
INSERT ALTER REVOKE TRAN
UPDATE DROP COMMIT
DELETE TRAN
ROLLBACK

Fig. 1.3: SQL Language statements

AR tables, indexes, cor
& By using DDL statements, you can crete the ske
< Data Definition Language is used to stdr'e Metl
schemas, their names, indexes, columns in each table,

Here are some commands that come under DDL 3 Fiv byt
& Create : It is used to create objects in the database.

& Alter : It is used to change the structure of the database.

% Drop : It is used to delete objects from the database.

& Truncate : It is used to extract all records from a table.

& Rename : It is used to rename an object.
& Comments : It is used to comment on the data dictionary. :
to update the database schema, SO they come under Data definition

This command is used ‘

language.
1.4.1.2. Data Manipulation Language

DML stands for Data Manipulation Lan

database.
Here are some task
£ Select : It is used to retrieve data
rt : It is used to insert data into t
the exis

| records from a table.
date and delete operations together.

guage. It 1s used to access and manipulate data in the

s that come under DML :
from the database.
he table.

< Inse
ting data within the table.

Update : It is used to update
Delete : It is used to delete al
Merge : It is applied by combining insert, up
Call : It is used to call a structured query language or Java subprogram.

Plan : It has a parameter to explain the data.

?,
o

2,
0‘0

>,
Q’O

)
.’

>

)
”

Explain
Lock Table : It controls the concurrency.
1.4.1.3. Data Control Language

DCL stands for Data Control Lan

The execution of DCL is transactiona
database, rolling over execution of data contro
er DCL :

ivileges to a database.

*,

o
0.0

guage. It is used to retrieve stored or unsaved data.
I It also has a rollback parameter. (But in Oracle
| language is not supported.)

o,
0.0

)
0.0

Here are some commands that come und

4 Grant : It is used to give user access pr
Revoke : It is used to take back the permission from the user.
hich have the authorization of revoke :

CUTE, DELETE, UPDATE and SELECT.

There are the following operations W
CONNECT, INSERT, USAGE, EXE
ransaction Control Language

1.414.T
Used to drive changes made by TCL DML statements. TCL can be grouped into a logical
transaction.
t come under TCL :

are some commands tha
atabase.

Here

o Commit : It is used to save the transaction on the d

" dy ‘)’3'4”»’-?&'”??«"04"?'ér';i W S

"".i P

)
L gos
el i

. Stored Database
Fig. 1.4 : Data Independence

There are two types of data independence :

B 1.5.1. Logical Data Independence

% Logical dgta independence refers to the characteristic of being able to change the conceptual
schema without changing the external schema.

% Logical data independence is used to separate the outer level from the conceptual view.

% If we make any change in the conceptual view of the data, then the user view of the data
will not be affected.

% There is logical data independence at the user interface level.

B 1.5.2. Physical Data Independence
% Physical data independence can be defined as the ability to change the internal schema

without changing the conceptual schema.
% If we make any change in the storage size of the database system server, then the conceptual

structure of the database will not be affected.
% Physical data independence is used to separate the conceptual level from the internal levels.

% Physical data independence occurs at the logical interface level.

16.COMPONENTS OF A DBMS

There are four main components of a DBMS system :

Sl JA*

%

10 | Database Management System'
1. Data : Data to be stored in the database which can be a number, character, date or any logical
value.
2. Hardware : Computer, storage device, input-output device etc.
3. Software : Operating system, DBMS software, application programs etc.
" 4, User : Here it can have three types of users-
(i) Database Administrator (DBA) : Design and maintenance of database.

(ii) Application Programmer : Creates such application programs so that the database can be
used.

(iii) End user : Who accesses the data from the database through different types of programs and
applications and performs operations like insert, update, delete.

1.7. OVERALL STRUCTURE OF A DBMS

B 1.7.1. Logical Architecture

The logical structure tells us how the database will appear to the user. Through this structure, the
user works on the database, makes changes to the database, but is not concerned about how the
internal processes of the database are being performed and how and where the data is actually being
stored in memory? We can understand the logical structure of the database management system

through the following figure :

External or View Level

Conceptual Level
System l Database
Administrator Administrator

Physical Level

Physical
Database

Fig. 1.5—Logical architecture of DBMS

B 1.7.2. Physical Architecture

The physical structure of the database defines the software components that make up .the
database management system and the components that are responsible for actually inserting data into
the database and processing the data. The physical structure of the database also tells us how these
software elements are related to each other and how they work together. We can understand the
physical structure of the database management system through the following picture :

!

File
Manager

File
Storage

Fig. 1.6 : Physical architecture of DBMS

DML Compiler : The set of commands required to convert data, process data and obtain output
from the database as per the user’s requirement is called Data Manipulation Language. Commands

like SELECT...FROM etc. come under this.
DDL Compiler : DDL stands for Data Definition Language. Under this, commands related to

creating new tables in the database; For example, create table etc. comes.
File Manager : File manager manages the files stored in the hard disk. It defines the internal
schema used to represent the data stored on the disk. The file manager allocates the required space

on the hard disk to the data. File manager works with the help of operating system.

rovides interface between Low level data application

Database Manager : Database Manager p .
he interface for querying the database manager also
to maintain the

program and Query. In addition (0 providing t .
does the work of securing the database and enforcin

reliability of the data.

g the necessary constraints

12 | Database Management System

1.8. DATABASE USERS AND ADMINISTRATORS
B 1.8.1. Database Users

Database users are those who actually use the database. There are different types of users
depending on the requirement of the database and the way of accessing it.

1.8.1.1. Application Programmers :

The DBMS users who develop application programs and user interfaces for Navie users are
called application programmers. :

Programmers, to develop application programs in an object oriented language like :
etc. Or use any Fourth Generation Language like SQL, SQR or Xbase.

These are the DBMS users who write application programs for the database. These programs are
written in other general purpose programming language. These application programs are used to
perform different types of tasks.
1.8.1.2. Sophisticated Users

They are database developers who write AND queries to selchinserUdelete/uante data.' They
do not use any applications or programs to request the database. They communicate .dlrectly with the
database through a query language such as ANTH. These users are Scientists, Engmeers', Analysts,
who do deep study of Al and DBMS to apply the concepts in their requirement. Summing up, we
can say that this category includes designers and developers of DBMS and SQL.
1.8.1.3. Specialized Users

These are also sophisticated users, but they write specialized database application programs.
They are developers and develop complex programs as per the requirement.

1.8.1.4. Stand-along Users

These users will have a stand-alone database for their personal use. Such databases consist of
ready-made database packages that have a menu and a graphical interface.
1.8.1.5. End Users/Naive Users

End User or Navie Users are those DBMS users who access the database and on the basis of
Navie or end users only we can prepare any update and report in the database.

C+ +, Java,

End or Navie users do not know about the designing, access mechanism and working of the
database, they only use the system to complete the task.

Those DBMS users who interact with the database through Menu Oriented Application

Programs. They can perform only limited operations on the database, come under the category of
Navie-user.

This category of DBMS users is not aware of the existence of the database. Like : ATM.
B 1.8.2. DBA (Database Administrators)

Database Administrator is a user who has control over all the data. Database Administrator only
designs our database. Database Administrator only creates different users and gives access to them.
DBA is a person who has all the responsibilities of the data. DBA is the person or group of more
than one person who provides all the resources required to operate the database. The most important
responsibility of the Database Administrator is to systematically operate and control the database. It
is determined by the DBA that which user of the DBMS will do what work. A DBA is the person or

10.
11.
12.

13.

also decided by DBA.

Granting User Access : A]]
7y : th : _
s s’ W18 decided by e DR AC users in our database have to be given access to the database,

It is decided by the DBA itself that what type of information will be kept in the database.

It is the database administrat : :
oo or who decides what kind of structure will be created to store the

DBA determines what will be the work of a user and at what level that user will work.

Itis gnlgl t,)z]:he DBA that all the users of the database are provided with assistance as and when
required. policies related to the security of the database are made by the DBA

DBA works to periodically inspect the activities of all the working users.
The DBA is also responsible for changes over time.
The work of creating harmony between each user working on the database is also done by the

DBA.
DBA decides which data is to be shown to the user and which is not to be shown.

1.9 THREE VIEWS OF DATA (EXTERNAL VIEW, CONCEPTUAL VIEW
AND INTERNAL VIEW)

Abstraction is one of the main features of database systems. Hiding irrelevant details from the

user and providing users with
interaction. We discussed three levels of DBMS architecture. Th

“view level’”’. The view level provides use
details from the user; Hides data relationship
understand the view of data, you need to know a

1. Data abstraction

an abstract view of the data helps in easy and efficient user-database
e top level of that architecture is the

rs with a “‘view of the data’ and removes irrelevant
s, database schema, constraints, security, etc. To fully
bout data abstraction and instance and schema.

2 Instance and schema

'l 1.9.1. Data abstraction
We have read about data abstraction points earlier.

B 1.9.2. Schema and Instance
& The data that is stored in the database at a particular moment

database.

The overall design of a database is called a schema.

A database schema is the skeleton structure of a database. |

the entire database.
Schema objects in a schema; Like-Table, foreign key, primary key,

types, stored procedures etc. are included.
& A database schema can be represented using a visual diagram. This diagram shows the
relationship between database objects and each other.
A database schema is designed by database designers so
display certain aspects of a schema such as record types, data types,

cannot be specified through the schema diagram. The figures given,
data type of each data item nor the relationships between the different files.

In a database, the actual data changes quite frequently; For example, in the given data, whenever
we add a new grade or add a student, the database changes. The data at a particular moment of time

is called an instance of the database.

1.10 THREE LEVEL ARCHITECTURE OF DBMS|THREE SCHEMA ARCHITECTURE

rchitecture is also called ANSI/SPARC architecture or three-level architecture.
This framework is used to describe the structure of a specific database system. Three schema
érchitecture is also used to separate user applications and physical databases. There are three levels
in the Three schema architecture. It breaks down the database into three different categories.

: It shows the DBMS architecture. Mapping is used to transform requests and responses between
cﬁfferent database levels of the architecture. Mapping is not good for small DBMS as it takes more |
time. External/conceptual mapping, it is necessary to convert the connectivity from external level to ‘
conceptual schema. Conceptual/internal mapping changes the DBMS request from conceptual to I

‘is called an instance of thej_:

Xd

t represents the logical view of

2
0'0

view, columns, data

O
L4

that programmers whose software can
and constraints. Other aspects
for example, show neither the

Three schema a

internal level.
H 1. Internal Level
< This level contains an internal schema, which describes the physical storage structure of the

database.
& Internal schema is also known as physical schema.
It uses the physical data model. It is used to define how the data will be stored in the block.

Physical level is used to describe complex low level data structures in detail.

We store data in the disks that are in our computer system.
& In this level space allocation is decided, that is, how much space is to be used to store the data.
& Which file system we have to use for physical storage is decided in this.]
& The technique of encryption or compression of data is also decided here.
The placement of records is also decided here.

o> 9,
LR RS

>

*

Database @

Stored Database

(a) Mapping between leve| (b)

Fig. 1.7 : Three views of data

B 2. Conceptual Level

»

<
o9

<

&
&
&
&
&

Conceptual schema describes the des;
level is also known as logical level.
This schema describes the structure of the entire database.

Conceptual level tells what data will be stored in the database and also tells what is the
relationship between those data.

At the conceptual level, internal details such as the structure of the data implementation are
hidden.

Programmers and database administrators are working at this level.
In logical level it can also be said that:

What are the constraints of data?

Can also extract schematic information of the data.

Can also extract related information from security.

gn of a database at the conceptual level. Conceptual

Example : We are storing the data of employee and department, so we can find the relationship
between them along with the data store.

N 3. External Level

L

®

At the external level, a database consists of several schemas, which are sometimes called
subschemas. Subschemas are used to describe different views of the database.

External schema is also known as view schema.

- 16 | Database Management System

< A view schema describes the part of the database that a particular user group is interested m
and hides the remaining database from that user group. 9
% View schema describes the end user interaction with the database system.
% We can show different views to different users. :
Example : Different view can be provided to User A and User B, that is, the le
both of them will be different.

1.11 INTER-RELATIONSHIP BETWEEN INTERNAL, CONCEPTUAL
AND EXTERNAL LEVEL -

The lowest level of this architecture is the internal level. This level is a}so called physical level.
This level represents the actual form of data that is stored in the storage medium.
The inter-relationships between all the three levels of DBMS architecture are shown in the

following figure :

vel or view of

N T

(Student) (Batch) i]
View 1 View 2 ll
roli_no roll_no L External level/ |
name name batch View level <
roll_no Number (5)
name Characters (15) —> Conceptual level
batch Characters (10)

;

Student_roll_no Length (30)
Type = Byte (5) offset = 0, Index = IX

roll_no
name Type = Byte (15), Offset = 5 P prt]err}al II?veII/
batch Type = Byte (10), Offset = 7 yerEm e

Fig. 1.8 : Relationships between the three architectures (external, g
conceptuali, internal layers) of the DBMS architecture

1.12. CLIENT SERVER ARCHITECTURE

It depends on the architecture of DBMS design. Basic client/server architecture is used to deal
with the large number of PCs, web servers, database servers and other components that are
connected with the network. Client/server architecture consists of multiple PCs and a workstation
which are connected through a network. The DBMS architecture depends on how users are
connected to the database to receive their requests.

M 1.12.1. Types of DBMS Architecture

Database Ar_chitecture.can be seen as single tier or multi-tier. But logically, there are two types
of database architecture; Like : 2-tier architecture and 3-tier architecture. i

1-Tier Architecture

& In this architecture, the’database ey : st s Wy gl o |
directly access the DBMS, is directly available to the users. It means that the u

& The changes made here will be d : , s
tools for end users. one directly on the database.

& I-tier architecture is used for local applicati icdandt B
: ; pplication development, programmers can directly
communicate with the database for quick response. : ; <

2.Tier Architecture
+ The 2-tier architecture is similar to the basic client server. In 2-tier architecture, applications

on the f::lient end can communicate directly with the database on the server side. For this
interaction, API’s like, ODBC, JDBC are used.

% User interface and application programs are run on the client-side.
< Server side is responsible for providing the functionalities; For example, query processing
and transaction management.
¢ To communicate with the DBMS, the client-side application establishes a connection with
the server side.
3-Tier Architecture
% In 3-Tier architecture, there is a layer between the client and the server. In this architecture,
the client cannot communicate with the server directly.
The application on the client-end interacts with an application server and this application
server communicates with the database system.
The end user has no idea about the existence of the database beyond the application server.
The database does not contain any information about any other user beyond the application.

R

R
o

3-Tier architecture is used in case of large web applications.

2
%

R ey -
RHE T 8 iy

’ ‘. ' - ‘.

: User : E User ‘J :

! l ! Client ! l '

! Applications : | Applications cuom/l E

VT e e H (e T T 5

Network Network

e e I i e oo e o e S ST NG \

:' , \E :’ ﬁpplication Servil i

I | Database SystenLI I Server | [i

| : | [—IJatabase System_J !

1 " ;\ ;

N e e e s o N e e e s

(a) Two-tier Architecture (b) Three-tier Architecture

Fig. 1.10
113. DIFFERENCE BETWEEN DBMS vs. RDBMS

The below table demonstrates the main differences between DBMS and RDBMS :

RDBMS

DBMS

e DBMS stores data in the form of files.

e Only one data element is accessed at a time.

e One data element is not related to another data

element.

o Normalization does not happen.
« DBMS does not support distributed data.

oIt saves data in navigational or hierarchical form.
e It is used to handle small data.
e Data redundancy is a common thing in this.

o It is used in small organizations.

e Supports single user.
o It takes a lot of time to fetch large data.

e There is a low security level for data manipulation.

e Low software and hardware are required.

Examples : XML, Microsoft Access, etc.

e RDBMS saves data in tables.

e Multiple data elements can be accessed
simultaneously.

o In this, data is saved in the form of tables, which
are related to each other.

o Normalization happens.

e RDBMS supports distributed data.

e It uses tabular form to save the data.

oIt is used to handle a lot of data.

o There is no data redundancy in keys and indexes.

oIt is used in large organizations, where a lot of data
has to be handled.

e [t supports multiuser.

o In this data fetching is faster than DBMS.
e RDBMS has multiple level of security.

o Higher software and hardware are required.

Examples : MySQL, PostgreSQL, SQL Server,

Oracle, etc.

Database System Co

ncept and Data Modeling | 19

RDBMS

Data is stored in the form of tables.

RDBMS uses a tabular structure
where the headers are the column
names and the rows contain
corresponding values.

It supports multiple users.

Relational databases are harder to
construct, but they are consistent and
well-structured. They obey ACID
(Atomicity, Consistency, Isolation,
Durability).

It is the database systems which are
used for maintaining the

relationships among the tables.

Higher hardware and software need.

RDBMS supports the integrity
constraints at the schema level.
Values beyond a defined range
cannot be stored into the particular
RDMS column.

RDBMS can be normalized.
RBMS offers support for distributed

¢ below table demonstrates the main dj o
e Mn RDBMS and DBMS :
% parameter . . DBMS '
g DBMS stores dary - ———
Siorage Stores data ag 5 file.
tabase structure DBMS' System storeg in ei
Da navigational or hierarchi(isit?orlrﬁ cither a
Number of users DBMS supports singe yger only
In a regular datap, .
ACID g latabase, the datg ma
stored fqllowmg the ACID model. ’)1’“1?1(3)2;:;
develop Inconsistencies in the database
Type of program :lt ig the program for maﬁaging the
atabases on the computer netw
system hard digks. SIS
Hardware and|Low software and hardware needs.
software needs
Integrity constraints DBMS‘ does not support the integrity
constraints. The integrity constraints are not
1mposed at the file level,
Normalization DBMS does not support normalization.
Distributed databases DBMS does not support distributed
database.

Ideally suited for

Dr. EF. Codd Rules
Client server

Data fetching
Data redundancy

Data relationship

Security

DBMS system mainly deals with small
quantity of data.

DBMS satisfy less than seven of Dr. E.F.
Codd Rules.

DBMS does not support client server
architecture.

Data fetching is slower for the complex and
large amount of data.
Data redundancy is common in this model.

No relationship between data.

There is no security.

databases.

RDBMS is designed to handle a
large amount of data.

DBMS satisfy 8 to 10 Dr. E.F. Codd
Rules.

RDBMS supports
architecture.

Data fetching is rapid because of its
relational approach.

Keys and indexes do not allow data
redundancy.

Data is stored in the form of tab!es
which are related to each other with
the help of foreign keys.

Multiple levels of security. Log files
are created at OS, Command and

client-server

Object level.

I
12,
13.

State the difference between Logical and Physical Data Independence. X1 T
What is Database Management System (DBMS)? P
What is Data Modeling and tell its advantage. :
What are the advantages and disadvantages of DBMS?

Explain in detail about the application of DBMS.

Differentiate between DBMS and File processing system.

What is data abstraction? Explain its level.

What do you understand by Database languages and how many types are there?

. What is Data Independence? Explain about Logical and Physical Data Independence.

Explain in detail about 3-levels architecture or 3-schema architecture of DBMS.
Differentiate between DBMS and RDBMS.

What is client server architecture? Tell about its types.

i Rk

N

mean its data types, relationships and the constrai

jike that. Data model also defines h

ow the lo 1cal . .
organiZeS a5idl Stoees diin gical structure of the database is built. Data model
Peizmocel conS1§ts of two parts, logical design and physical design. We can say that models are
the cornerstone of design.

Just as engineers prepare a model of a house before building it, similarly a database designer
prepares a data odel. to improve the database design. The main purpose of the data model is to
communicate and specify the concept.

The structure of a database is expressed throu

gh data models. A data model is a collection of
concepts that are used to represent the structure o

f a database. By the structure of the database, we
nts applied on them. Data models also define a set
s and updates of data from the database.

2.2. ADVANTAGES OF DATA MODEL

1. Increased effectiveness : The data model incre
the data it contains is real, reliable, and extensible.

of basic operations that are performed for retrieval

ases the effectiveness of the database because

2. Reduced costs : Through the data model, database applications can be built at a lower cost.

3. Simplicity : Data models are made in such a way that there is no problem in accessing the
database. Its interface is very simple so that most of the users can use it easily.

4. Minimum redundancy : Redundancy means “duplication of data” i.e. same type of data
Present in two places.

Data models greatly reduce redundancy.

S. Data integrity : Data models do not allow any user to access the database without the
Permission of the owner. Any user can access the database only when he proves his integrity.

6. Data independence : Any data in data models is independent from the database. Even if any
change is made in any data, it does not make any difference in the database program.

22 | Database Management System

7. Faster performance : If the data model is gqod, then the performance of the database |
becomes very fast because the database is created according to the data models only. B

8. Reduced errors : There are two types of errors in DBMS—(i) Database application error,
(i) Data error. Data model reduces both these errors very much and it improves the quality of the data.

9. Reduced risk : We can reduce the risk of the database through the data model. The data
model estimates the complexity of the database and analyzes the full list of database risks.

2.3. TYPES OF DATA MODELS

Types of data models are of the following types. These are also called data models.

Data Models
| |
Object Based Record Based Physical
Data Models Data Models Data Models
Entity-Relationship Relational Model Unifying Model
Model = M
Network Model ramht;:l‘o dzlmory
Object-Oriented
Model Hierarchical Model

Fig. 2.1 : Types of data models

B 2.3.1. Hierarchical Model

There is a parent-child relationship in this model. In this model each entity has only one parent
and many children. There is only one entity in this model which we call root.

In this model, data is organized in a tree-like structure with only one parent. In this, data is
stored like records, which are related to each other. It was proposed in 1970.

The biggest drawback in this is that there is a lot of repetition of data in such a database. This
increases the size of the database and makes it difficult to maintain.

For example, in a college there are many courses, there are many professors and students, then
the college becomes a parent and professors and students become its children.

College
i
[|
Department Infrastructure
Course Professors Students

Fig. 2.2 : Hierarchical model

e Data Modh ."23
The biggest drawback of these is that there is a lot petiti ita i 1 databases. TH
. . of repetition of data in ' i
atly increases the size of the database and becomes diﬁic:l‘: to maintain. = l suéh daea - This
Advantages of Hierarchical Model

It is simple straight format and natural method, which implements relationships.
¢ It promotes data sharing. : :

& It has parent/child relationship,

. due to which its concepts are simple.
& It provides database security.

< There is a 1 to many relationship in this, when the user needs a large number of transactions.
pisadvantages of Hierarchical Model |

4 This model cannot represent all the relationships in the real world.
% It is not flexible.

4 It does not have data definition and data manipulation languages.
% Itisalso f:orpphcated to implement insert, delete and update anomalies in this model.
Changes in its structure require changes in all programs.

B 2.3.2. Network Model

This moc'l.el 1s an extension of the hierarchical model; But it differs from the hierarchical model
in that a child node can have more than one parent node. It is expressed by the following
relationship :

[Preethi [111-222-3456] Velhanka | Bangalore
Employee-1 Employee-2 Employee-3

> A-101 | 1000.00 | Training-1 Training-ﬂ LTraining—3
1 A-111 [3000.00 |

Fig. 2.3 : Network Model

In the network model, data is organized in a graph and can have more than one parent node.
That is, there is more than one parent/child relationship in it and some entities can access it through
multiple paths, so it can be said that in this model data is accessed in the form of a network.

The network model was most commonly used until the relational model was proposed.

This model is in the form of a graph. As per requirement, these relations can also be converted
into One to many or One to one relationship.
Advantages of Network Model

% Its concepts are as simple as the hierarchical model.

% There is more than one parent/child relationship in it.

< Data can be easily accessed in this.

¢ It provides data integrity. _
¢ It consists of Data definition language (DDL) and Data manipulation language (DML).

¢ Useful for representing Many to many and One to many relationships.

24 | Database Management System

Disadvantages of Network Model
& Its database structure is very complex because all the records in it are maintaj
intai

pointers. ned using

< Changes in its structure have to be made in all the programs.
< To insert, delete and update a record, the pointer needs to be adjusted

B 2.3.3. Relational Model

In this model, data is stored in relations i

: i ns ie. tables and each relation has rows and columns
.) ' S

Relational model is a group of tables, in which data and relationships are specified. : : '

. ta;;lethls, T]lt: is stored in two dimensional tables. Tables are also called relations and each row of
is called a tuple. Tuple represents the entity and the column represents the attribute of the

table.

. E.F. i i

Relation (Table) :

Attribute

Customer Social security |Customer street| Customer city Account

name . number
Johnson 192-83-7465 Alma Palo Alto A-101
Smith 019-28-3746 North Rye A-215
Johnson 192-83-7465 Alma Palo Alto A-201
Jones 321-12-3123 Main Harrison A-217
Smith 019-28-3746 North Rye A-201

Advantages of Relationship Model

2
%

b,
R4 d

&,
%

oo

R
0.0

*

L4

This model is very useful for representing real world objects and the relationships between
them.

It is very flexible, any type of changes can be done easily in it.

In this the data is kept in the table, so its concepts are very simple.

It provides data integrity i.e. no user can access the database without the permission of the
owner.

Effective for small databases.

In this model, relationship is implemented using primary key and composite key.

Disadvantages of Relational Model

o,
o

&,
0

It requires powerful hardware computers, storage devices and softwares.
It is very easy to use but when a user wrongly stores data in it then it becomes a very bad‘
DBMS. -

This is a very simple model, being simple, s ol
leads to the problem of data inconsistency and data duplication.

It does not allow nested structure. Nested s
applications.

some users create their own database, which:

tructure is required in CAD/CAE etc. |

£

_ @ This model supports limited data type only.
4 In some cases, this mode] is unab

m 2.34. Object Oriented Model

le to

represent every information. -

Vehicle

name hair-color

—— Aggregation

— Inheritance

name location

Fig. 2.4 : Object oriented model
This model object oriented pro
perl etc. It was built in the 1980s.
Advantages of Object Oriented Model
 Semantic content can be inserted in this.

% It supports inheritance which increases data integrity.

o

% It improves performance.
< It is based on the real world.
% There is less loading in the database based on this model.
Disadvantages of Object Oriented Model
It requires a powerful system, due to which the transaction becomes very slow.
This is a very complex model.
To use it one has to learn it first.
There is very little security in this.
2341, Object Oriented Database Management System : OODBMS
Although relational databases can be used to manage and store objects, they do not understand
Objects like object-oriented databases. Hence Object Oriented Database Management System
(OODBMS) was developed. OODBMS is an association of object oriented programming paradigm
and database technology. Hence, apart from the principles of database, it also covers the main

gramming languages; Like - works with python, java, VB.net and

2, O 0
0’0 ‘.0 0‘0

9,
0'0

= RN ST R

26 | Database Management System

i ing; data independent, data encapsulation

t programming; For example, supports ! a encapsu ,
oy 0:‘1: (;defltit?:nd polymorphism. Mainly the purpose of developing this is unstructured
ound etc. have to be stored and retrieved.

princip :
inheritance, obj ' :
data; Like-picture, video clip, s

Relational
Database

Object-Oriented
Programming

Polymorphism

Encapsulation

Fig. 2.5 : Object Oriented Database

sing

Query Proces

With the help of OODBMS, the user can manage, retrieve and store the objects according to

him. An object is a set of data and a procedure, where the procedure manipulates the data.
The query language used by OODBMS is called ‘Object Query Language’.

2.3.4.2. Object Oriented Relational Database

Object Oriented Concept and Structure in RDBMS to OODBMS; Like-Abstract data type, nested
tables and arrays have been created by extending them. Give it new data type; For example, it has
been developed to manage and retrieve audio, video and image files. The system combines the main
features of modern object oriented programming languages and relational databases; For example,
multiple views of data combine the benefits of a non-procedural query language. By using
OORDBMS, any organization can use it continuously without making any major changes in its
available system. So it provides parallism between the user and the programmer.

IBM’s DB2 Universal Server, Oracle Corporation’s Oracle 9i and Microsoft Corporation’s SQL
Server 2000 are examples of object relational database systems.

B 2.3.5. E-R Model

ER Model is an entity relationship model. It is a high level data model. This model is used to
define the data elements and relationships for a specific system.

Entity relationship model is a detailed logical representation of the data of an organization or
business group. An E-R model is usually expressed in the form of an entity relationship diagram (or
E-R diagram). It is a graphic representation of the relational model. The Entity relationship model is
based on the rules of the real world (data) which are built up of sets of basic attributes called entities
and the relationships between these attributes.

The E-R Model was proposed by Peter Chen in 1976. ER model is used to represent the
conceptual schema of the real world. The E-R model defines the conceptual view of the database.

student

Fig. 2.6

E-R model is also called E-R dj
the relationship between the entitjes.

The E-R model is a diagrammatic fepresentation of the logical structure of a database. The E-R

model describes the re!atignship between entities and attributes. Two techniques are used for the
purpose of database designing from the Tequirements of the system :

(i) Top down approach known as entity relationship modeling
(i) Botom up approach known as normalization
E-R model is an entity relationship model. It is a high level data model. This model is used to
define the data elements and relationships for a specific system.

For example, suppose we design a school database. In this database, Student will be an entity

with attributes sucl_l as address, name, ID, age etc. Address can be another entity with attributes like
city, street name, pin code etc. and there will be a relation between them.

2.3.5.1. Advantages of E-R Model

% Conceptually it is very simple : E-R model is very simple if we know the relation between
entities and attributes, then we can easily draw E-R diagram.

% Better visual representation : The E-R model is a diagrammatic representation of any
logical structure of the database. By looking at the E-R diagram, we can easily understand
the relationship between entities and relationships.

< Effective communication tool : It is an effective communication tool for the database
designer.

< High integrated with relational model : E-R model can be easily converted into tables
(relational model).

agram because it represents the entities graphically and shows

< Easy conversion to any data model : E-R model can be easily converted to other data
models such as hierarchical data model, network data model.

2.3.5.2. Disadvantages of E-R Model
@ Limited constraints and specifications.
% Loss of information content : Some information is lost or hidden in the E-R model.
% Limited relationship representation : The E-R model represents limited relationships as
compared to other data models such as relational models etc.
% No representation of data representation : Data manipulation is difficult to represent in
the E-R model.
% Popular for high level design : The E-R model is very popular for high level design.

28 || Database Management System
¢ No industry standard for notation : There is a standard notation for developing E-R

models.
¢ Popular for high level design : The E-R data model is particularly popular for high level

design.
2.3.5.3. Features of E-R Model
Following are the important features of E-R Model :
< E-R model is a high level conceptual data model.
< E-R diagram is used to define the overall structure-of a database.
< In the E-R model, data is described as a collection of entities, relationships and atrributes.
< It provides the facility to describe the data included in various enterprises in terms of objects
and their relationships.
2.3.5.4. E-R Diagram Notations
Databases can be represented using notations. Several notations are used to express cardinality in
an E-R diagram. These notations are as follows :

Represents Entity
Represents Attribute

Represents Relationship

Links Attribute(s) to entity set(s) or
Entity set(s) to Relationship set(s)

0 100L

Represents Multivalued Attributes
/ }Mgi

-~ > R%?cs T?a(Pary‘zﬁ;jatiov?Entity OCH:‘M(J A Hfb

N ————

Represents Total Participation of Entity
Represents Weak Entity

Represents Weak Relationship
Represents Composite Attributes

Represents Key Attributes / Single Valued Attributes

000

2.3.5.5. Components of ER Diagram
1. Entity
2. Attribute
3. Relationship

4. Key
5. Mapping Cardinality

|
|
|

Data Mode! | 20

23.5.5.1. Entity : An entity can be any person, place and real word objest, Such ss customer id,

customer name and customer city etc. are attributes, which are defined in the customer entity. In E-R
diagram. the entity is represented by rectangles.

The thing whose information we store in the Potm of data in a database is called entity.

Employee Womuor' : Department

Fig. 2.7 : Entity

Entity is a person, place, thing, event, concept in the real world, which is distinct from all other
objects. An entity ha§ a set of properties and the value of some set of properties can uniquely identify
the entity. An entity is represented by a set of attributes. Each attribute has a set of acceptable values

called the domain or value set of that attribute. Examples of each of these types of entities are as
follows :

Person : Employee, Student etc.
Location : City, State, Country.

Entity sets : An entity set is a group of entities of the same type that share the same properties.
Example : The group of all those people who are customers in a bank is a set of entity.
Types of entities : There are following types of entities in DBMS

1. Weak entity : Weak entity is such an entity which cannot be uniquely identified by its
attributes, then we can say that it does not have a primary key.

A weak entity is one whose existence depends on some other entity set. In other words, an entity
set that does not have enough attributes to form a primary key is called a weak entity set.

2. Strong entity : The entity that has a primary key is called a strong entity.

A strong entity set is one whose existence is independent of other entity sets. In other words, an
entity set that has a primary key is called a strong entity set.

2.3.5.5.2. Attributes : An attribute is a property of an entity that is distinct from other entities
and provides information about the entity. The attributes that identify the entity are called key
attributes and the attributes that describe the entity are called non-key attributes. An attribute type is
a property of an entity type. Attribute is represented by an ellipse.

For example, Student is an entity and its attributes are subject name, subject code and gender.

- The attribute is a descriptive property. For each attribute there exists a specific domain or set of
values. Attributes are used to represent an entity. Attributes are properties that describe an entity

within an gntity set.
Entity Student—Student id, student name ‘Address’ Phone No. ARribuies
Employee—Employee id, Employee name, Designation, Branch.

For example, ID, age, contact number, name, etc. can be attributes of a student.

30 | Database Management System

oy
-

Fig. 2.8 : Attributes

Types of Attributes

Composite
Attributes

Simple
Attributes
Multi-Valued
Attributes

“Single Valued
Attributes

Key
Attributes

Types of
Attributes

Derived
Atuibutes

Fig. 2.9 : Types of attributes

Types of attributes : The attributes in DBMS are of the following types :
1. Simple and composite attributes : The sim
while the composite attributes are divided into subparts.

For example, the Name attribute is split into first name and last name. Where name is a
composite attribute and first name and last name are simple attributes.

ple attributes which are not divided into subparts,

Composite attributes are attributes that are made up of several other simple attributes

First

Last
Birthdate
Class
Roll_no Age Name P
{_Age)
Student

Person
(a) Simple attribute

(b) Composite attribute

B e e e e e o e ot

Ry Mml 313“
<>

Student
(c) Composite attribute @

Fig. 2.10 : Composite attribute and simple attribute

2. Single valued and multivalued attributes : The attribute which has only one value for a
particular entity is called single value attribute. For example, a person’s DOB is a single value
attribute.

Because a person can have only one date of birth.
The attribute which has more than one value is called Multivalued attribute.

For example, there can be more than one attribute color and employee phone number for an
entity car.

Double oval is used to represent multivalued attribute.

Age DOB Age
Roll_no Gender Roll_no

Student Student

U] (i)
Fig. 2.11 : Single value and Multi value attribute

In figure (i) all attributes are single value because they can take only one specific value for each
entity. Figure (ii) The attributes “Mob_no” and “Email_id” are multlvalue attributes as they can take
more than one value for a given entity.

3. Stored and derived attribute : The value of the attribute is derived from the value of another
related attribute.

For example, if a person’s age is derived from his date of birth, then age is a derived attribute
and birth date is a stored attribute.

32] Dm.\mnagemont System ..
g
Birth Date i
Student 4
Roll_no Age

Fig. 2.12: Stored and derived attribute

ated from the employee attribute (joining
loyment duration is derived attribute as it
Duration is not an attribute of the

f an employee can be calcul
d or base attribute and emp
bute of employee. Employment

Example 2 : The tenure 0
date). Here joining date is store
is derived from joining date attri
entity employee.

Null Attribute : An attribute tha
value is used when the entity does not

phonenumber of an entity employee may or may n
employees have phones. Here phonenumber is null attribute.

Key Attributes are attributes that can uniquely identify an entity in an entity set.
y attribute as it can uniquely identify any student.

s (e

Student

a NULL attribute. The null
For example, the attribute
essary that all

t can have a NULL value is called

have a value for the attribute.
ot contain a value. It is not nec

The “roll_no” attribute is a ke

B 2.3.5.5.3. Relationship

Fig. 2.13 : Null attributes

Relationship : A relation between two or more entities is called a relationship.
Relationship in E-R diagram shows the relationship between entities. Relationship is displayed

by diamonds.
For example : Teacher teaches_at school and soldier enrolls in a military; Where teaches_at and

enrolls are called relationships. :
A relationship is used to describe the relationship between entities. |

Diamond or thombus is used to represent relationship.

When only one instance of an entity is associated with the relationship, it is known a;' One to

one relationship.

B Relationship Set
A set of relationships between entities is called a relationship set.
diﬂ'A rc:laltlonsh:p 1sf ahpartmrship between multiple entities. Relationships are the glue that holds the -
erent elements of the E-R model together. A relation set is a set of relations of the same type. For

Data Model | 33

'examples a customer can take any type of loan (business loan, personal loan,
the bank. Therefore, all the relationshi

collectively called the relationship set.

For example, suppose there are two entities Employee and Department and there is a works_for

relationship type between them. We can also show the relationship between them in the form of
mapping like the following picture. ‘

home loan) offered by
ps between the customer and the loan availed by him will be

The degree of the relationship, the number of entity types that participate in the relationship. The
three most common relationships in the E-R model are unary (degree 1), binary (degree 2) and
ternary (degree 3). Examples of these three relationships are given below in the pictures :

1. Unary relationship : A unary relationship is a relationship between instances of a single
entity type (a unary relationship is also called a recursive relationship.) Two examples are shown in
the figure. In the first example "IS-MARRIED TO" is shown as a one-to-one relationship between
instances of the PERSON entity type. In the second example "MANAGES" is represented as a
one-to-many relationship between instances of the EMPLOYEE entity type.

AN\
PERSON IS-MARRIED-TO EMPLOYEE

ONE-TO-ONE ONE-TO-MANY
Fig. 2.14 : Unary relationship

2. Binary Relationship : A binary relationship is a relationship between instances of two entity
types and is the simplest relationship in data modeling. Three examples are given in the figure. The
first (one-to-one) indicates that one employee is assigned one parking space and each parking place
is assigned to one employee. The second (one-to-many) states that the product is from only one

- product line. In the third (man-to-many) example, it is stated that students can register for more than

One course and each course can have many student registrants.

34 | Database Management System |
- Employee Works_for Department

/ E; Ry D,
E; R D,
E; Rs -Dj
E Ry .
Es Rs .
Eg Re ¢

. .

Binary : If the degree of relationship type is two, then it is called binary.
[binary = degree 2]

Employee | Is-assigned Parking Place
One-To-One
Product-line | Product
One-To-Many
Student Registers-For Course

Many-To-Many
Fig. 2.15 : Binary relationship

3. Ternary Relationship : Ternary relationships are simultaneous relationships between
instances of three entity types. The picture shows an ideal situation in business that leads to a ternary
relationship. In this example the vendor can supply various parts to the warehouse. The supply

relationship records specific parts that are supplied to a specific warehouse by a number of specific

vendors. Thus there are three entity types—Vendor, Part and Warehouse. There are two attributes on

the relationship Supplies—Shipping mode and Unit cost. For example, an instance of Supplies may 3
record a pack that the vendor can ship to a parts warehouse, and that the shipping mode is next-day

air and the cost is Rs.5 per unit.

Part

Vendor

Supplies

Warehouse

Shipping Mode Unit-cost
S

Fig. 2.16 : Ternary relationship

tionship type is three, then it is called ternary.
[Ternary = degree 3]
type is n, then it is called n-ary.
[n-ary = degree n|

N-ary : If the degree of relationship

Secondary Key

Unique Key

Foreign Key Composite Key
Partial Key Surrogate Key

Fig. 2.17 : Different types of keys

Different Kinds
of Keys

Alternate Key

Super Key

A super key is a set of attributes that can uniquely identify each tuple of a given .relation. There

0 limit to the number of attributes for a super key. A set of one or more attributes that can

uniquely identify an entity in an entity set. Any superset of a super-key can also be taken as a super
€y”. This can be better understood by the following example :

is n

36 | Database Management System

have four attributes _A, B, C. and D. If the t.attribute can uniquely identify an entity,
then A is the super-key for that entity. Similarly, any attribute or combination of attributes with
attribute A can be called super key. That is {A, B}, {A, C}, {A, D}, {A, B, C}, {A, B, D}, {A, C,
D} and {A, B, C, D} can be called a super key.
Example 2 : Student Schema : Student (roll, name, sex, age, address, class, section)
Given below are examples of super keys because each set can uniquely identify each student in
the Student table.
& (roll, name, sex, age, address, class, section)
& (class, section, roll)
& (class, section, roll, sex)
& (name, address)
Candidate Key

“A minimal super key is called as a candidate key.”

A minimal set of attributes that can uniquely identify each tuple in a given relation is called a
valid key.

Candidate key : All attributes or sets of attributes that can uniquely identify an entity are
candidate keys. Only a key can be a valid-key, none of whose proper subsets is a super key. This can
be better understood from the following example.

Let an entity have four attributes A, B, C and D. Now if both attribute {A} and a {C, D} can
uniquely identify an entity to an entity, then the following are also super-keys according to the
definition of a super-key—with respect to A—{A} , {A, B}, {A, C}, {A, D}, {A, B, C}, {A, B, D},
{A, C,D}, {A, B, C,D} and {C, D, A}, {C,D,B}, {C,D, A, B} with respect to C, D.

Now, according to our definition of a valid key, only those keys can be valid keys whose subsets
are not supersets. According to this {A, B} cannot be a candidate, because its subset {A} is a
super-key. Similarly {B, C, D} also cannot be a valid key, because its subset {C, D} is a superkey.
Similarly, only {A} and {C, D} can be valid keys.

Example : Student schema : Student (roll, name, sex, age, address, class, section)

Given below are examples of candidate keys because each set contains the minimum number of
attributes required to uniquely identify each student in the Student table :

< (class, section, roll)
% (name, address)

Notes :
% A valid key must contain all the attributes sufficient as well as necessary to uniquely

identify each tuple.

Each tuple loses its unique identity when any attribute is removed from the valid key.
The key value of the valid key must always be unique.

The value of a valid key can never be NULL.

It is possible to have multiple candidate keys in a relation.

Those attributes which are in some valid key are called prime attributes.

Let an entity

e

e Data MOdQ"l 37
primary Key ’
Primary Key is used for a valj

P it 4
by the database designer as the p Y 1at has been chosen

rimary means of identifying

b ety Candidate Key N
A primary key is a valid key that the database desi

chooses when dgsignipg the database. Or “The valid k:illgtllll:i i

the database designer implements is called the primary key.”
Notes : ‘

Fig. 2.18 : Primary key
% The key value of the primary key can never be NULL.

¢ The key value of the primary key must always be unique.

& Thle ke}f/ ;alue. of the primary key can never be changed i.e. no updation is possible. The
value of the primary key must be assigned when entering the record.

% A relation is allowed to have only one primary key.
Alternate Key

A valid key left unused after implementing the primary key is called an alternate key. Or

Unimplemc?nted valid‘key is called alternate key. Alternate keys are used for valid keys that remain
after the primary key is chosen by the database designer.

Foreign keys

An attribute‘ ‘X’ is said to be a foreign key to some other attribute ‘Y’ when its value depends on
the value of attribute ‘Y”. The relation in which attribute Y” is present is called referenced relation.

The relation ir} which attribute ‘X’ exists is called referencing relation. Attribute ‘Y’ may exist in the
same table or in a different table.

Example :
Teacher (t no, t_name, t_age, t_dept) Department (dept no, dept_name)
(Referenced relation)
(Referencing relation) I (Referenced relation)
Foreign key
Fig. 2.19

Here t_dept can take only those values which are present in dept_no in department table because
only those departments actually exist.

Notes :
% Foreign key refers to the primary key of the table.
% Foreign keys can only take values that are present in the primary key of the referencing
relation.
% Foreign key can take NULL value.
% There is no restriction on the foreign key being unique. But mostly it is not unique.

o 38 | Database Management System
¢ The referenced relation can also be called master table or primary table. Referencing relation
can also be called foreign table. : s , ,

I Composite Key '
A primary key that has more than one attribute is called a composite key.

Surrogate Key Z
A surrogate key has the following properties—it is unique for all records in a table. It can be

updated. It cannot be NULL i.e. it must have some value.
Example : In a class all the students have their own mobile number.

Unique Key
A unique key is a key with the following properties :
& It is unique for all records in the table.
& Once assigned, its value cannot be changed i.e. it is non-update.

« It can have a NULL value.
Example : The best example of unique key is Aadhaar Card Numbers.
< Aadhaar card number is unique for all citizens of India.
& Ifit is lost and another duplicate copy is issued, the duplicate copy has the same number as

the first.

< Thus, it is non-updatable.
& Some citizens might not have received their Aadhaar cards so for them its value is NULL.

Difference between Primary key and Foreign key
Primary Key Foreign Key
1. |It identifies the uniqueness of a record. It is a field of one table which is the primary key
of another table.

2. |1t never takes Null value. Means that no field of|It can take more than one Null value.

primary key remains empty. Everyone's value is
important.

3. |There is only one primary key in a table. A table can have more than one foreign key.

4. |We can insert any value in the primary key|We cannot insert any value in the foreign key
attribute, that is, we can enter any value. Even if|attribute, if that value is not in the primary key
it is not in the foreign key column of the|column of the referenced table.

referencing table.
5. |Primary key is also known as parent key. Foreign key is also known as child key.

2.3.5.5.5. Mapping Constraints : A mapping constraints is a data constraint that expresses the ;
number of entities to which another entity can be related through a relationship set. If is most useful , |
in describing relationship sets that contain more than two entity sets. For a binary relationship set R ‘

on an entity set A and B, there are four possible mapping cardinalities.

1. OnetoOne(1:1)

2. One to many (1 : M)
3. Many toone (M: 1)

4. Many to many (M : M)

-

" Data Model | 39
One-to-One
In this, an entity of entity set A is associated with only one entity of entit);-sct B and an entity of

entity set B 1S associated with only one entity of entity set A, hence it is called one-to-one. In a

one-to-one Mapping, an entity in student is assocj " en t0-0
is associated with an entity in student. ated with an entity in course and an entity in course
A

B
G 8D T
& Kl ‘.b 5 i‘.l 4_®——‘
a;’ b, | i or Student Course
SN = by 4 ~’<R><—
Cardinality Ratio = 1:1 One-to-One Relationship

Fig. 2.20 : One-to-one

Example : Suppose a male can marry only one female and female can marry only one male,
then we will call it one-to-one cardinality.
One-to-many

In. this, an gntity of entity set A can be associated with any number of entities of entity set B and
an entity of entity set B can be associated with only one entity of entity set A. That’s why it is called
one to many.

Ina one-to-mgny. mapping, an entity in student can be associated with any number of entities in
course, and an entity in course is associated with at most one entity in student.

Student Course

-

Cardinality Ratio=1:n One-to-Many Relationship
Fig. 2.21 : One-to-many

Example : In real world, a student can study in one college and he cannot study in any other
college simultaneously. While many students study in a college; So we will call this one-to-many

cardinality. P

Many-to-one
In this, an entity of entity set A is associated with only one entity of entity set B and an entity
of entity set B can be associated with any number of entities of entity set A.
In a one-to-many mapping, an entity in Student is associated with at most one entity in Course
and an entity in Course can be associated with any number of entities in Student .

40 Dgtla_pa'a‘g‘Management System

A B
o[} AN ‘_<F>_‘
s oy ¢ i rw i or Student Course
| a4 bs) 4 e : >
- as
T Cardinality Ratio=m: 1 Many-to-One Relationship
‘ Fig. 2.22 : Many-to-one
Many-to-many |

In this, an entity of entity set A can be associated with any number of entities of entity set B and
an entity of entity set B can be associated with any number of entities of entity set A.

In a many-to-many mapping, an entity in Student can be associated with any number of entities

in Course and an entity in Course can be associated with any number of entities in Student .
A B

a, b,

ap b, |
ag by ‘<f>—‘ Student Course
ay b,

Cardinality Ratio=m : n Many-to-Many Relationship

Fig. 2.23 : Many-to-many

Example : Many students can read many subjects.

2.3.5.5.6. Participation Constraints :
Participation Constraints

| N

Total Participation Partial Participation

1. Total Participation
It specifies that each entity in the entity set must participate in at least one relation instance in
that relation set. It is also called compulsory participation.
% Total participation is represented using a double line between the entity set and the
relationship set.

o N 1
E Student Course

Total Participation

Fig. 2.24 : Total participation

“ ., Data Model || 41,
¢ The double line between the entity set “Student”
represents the total participation, |

¢ It specifies that every student my in at least one course
2. Partial Participation . Each enti i ici i
i i set may or ma
relationship instance in that relationship set. v ¢ 7 1ot pertcipate in a

It is also called optiona] participation.
& Pam'al participation is Tepresented using a single line between the entity set and the
relationship set.

<F>\ E ' Student Enrolled

Partial Participation

and the relationship set “Enrolled”

Course

Fig. 2.25 . Partial participation

% Single line between the entity set

partial participation,

% The single line between the e
fepresents partial participation.

% It specifies that there exist some cour:

Relationship between Cardinality and

Minimum cardiality tells whether the pa

% If minimum cardinality = 0, then it

< If minimum cardinality

“Course” and relationship set “Enrolled in” signifies
ntity set “Student” and the relationship set “Enrolled”

ses for which no enrollment has been done.
Participation Constraints

rticipation is partial or total.

signifies partial participation.

= 1, then it signifies total participation.

Maximum cardinality tells the maximum number of entities that participates in a relationship set.

2.4. EXTENDED FEATURES ENTITY-RELATIONSHIP MODEL/EXTENDED
ENTITY-RELATIONSHIP (EE-R) MODEL

EE-R is a higher level data model that inco
Enhanced ERDs are higher level models that re
databases.

rporates extensions to the original ER model.
present the requirements and complexities of complex

In addition to the EE-R model concepts, EE-R includes :
@ Subclasses and Superclasses

* Specialization and Generalization

Category or Union type

< Aggregation

B 2.4.1. Subclasses and Superclass

A superclass is an entity that can be further divided into subclasses.
% For example, Consider shape superclass.

‘ Azl.wmm System

Shape
Triangle Square Circle

Fig. 2.26 : Subclasses and Superclass

has subgroups: triangle, square, and circle.

The superclass shape
th some specific characteristics,

Sub classes are a set of entities wi
properties from the superclass.

@ 2.4.2. Specialization and Generalization
g an entity, which includes generali

while the class inherits the

Generalization is a process of generalizin zed attributes oOr

properties of generalized entities.

Vehicle

Bottom up

Car Truck Motorcycle

Fig. 2.27 : Specialization and generalization

»
we have 3 sub units; Cars, trucks and motorcycles. Now

It is a bottom up process i.e. consider
all these three entities can be generalized into a superclass named as Vehicle.

Specialization is a process of identifying subsets of an entity that share some distinct
characteristic. It is a top down approach in which a unit is broken down into lower level units.

In the above example the vehicle entity can

2.4.2.1. Specialization
& In this process you can create more than one

subclass from only one superclass. There is an
IS-A relationship like generalization in this too.
It is a top-down process.

% Specialization is a top-down approach, and it is
the opposite of generalization.

be a car, truck or motorcycle.

Employee

Tester

% Specialization is used to identify a subset of an

entity set, which shares some specific Developer

characteristics.
Fig. 2.28 : Specialization

- SR VIS FY MW'“

Usually, the superclass is defined first, The subclass and its associated attributes are further
defined and then the relationship set is added.

For example, in an employee Mmanagement system, the Employee entity can be specialized as
Tester or Developer; Based on their role in the company.

2.4.2.2. Generalization

Generallzathn is the process of extracting common characteristics from two or more classes and
combining them into a “generalized” superclass.

4 It represents IS-A relationship. It is a bottom up approach.

4 It is understood from the word Generalization itself that it is used to create a general class
and at-the same time it is used to create a superclass. It is a bottom up approach,
Generalization is a process in which common characteristics of two or more classes are
extracted and combined into a generalized superclass. : [

% Generalization is like a bottom up approach, Person r\
in which two or more lower level units
combine to form a higher level unit; If they
have some common characteristics.

In Generalization, an entity of higher level
can also combine with entities of lower level
to form a higher level entity.

% Generalization is almost like the subclass and
; ; Faculty . Student
superclass system, but the only difference is .
the approach. Generalization uses bottom up Fig. 2.29 : Generalization

approach.
In Generalization entities are combined to form a more generalized entity, i.e. subclasses are
combined to form a superclass.
For example, the Faculty and Student entities can be generalized and create a higher level entity
Person.

M 2.4.3. Aggregation

In aggregation there is “HAS-A" relationship. This is a special type of Association. We can
understand aggregation as follows :

“Aggregation is a process in which information is gathered and expressed ip summary form.
This process occurs when the relation between two entities is treated as a single entity.

Aggregation represents abstract entities by allowing relationships between relationships. '

In aggregation, the relationship between two entities is t.reated as a single entity. In aggregation,
the relationship with its related entities is aggregated into a higher level entity. .

For example, if a visitor visits a coaching center, he will never inquire about the course or just
about the center, rather he will inquire about both.

e i i, . naiade i > e] e

44 | Database Management System

ce < orer>—{come
Visitor
Fig. 2

STUDENT |

STUDENT_COURSE

o]

.30 : Aggregation

SUBJECTS

Example : Here the relation between student and course is shown as an entity.

2.5. EXAMPLES OF E-R DIAGRAM

Example 1 : E-R Diagram for Student

@ S_roll no.

—_————

———-—

—

s

S_dob

STUDENT

-

\
~

\ Address

Age /)

-

Example 2 : E-R Diagram for Hospital

Permanent
Correspondence

Contact
<>

s>
[Dootors e Name > —CMiddie
Clas

&

Permanent

Correspondence

Fig. 2.31 : E-R diagram for Student

D

Specialization

Fig. 2.32 : E-R diagram for Hospital

LS NC AT

" Data Mode |45

Example 3 : E-R Diagram for Banking System

stomer-name
cu
customer—street

loan-
customer loan payment

gust-banker>—ype balance

borrower>—[Gcount
employee

employee-name telephone-no. l saving-account] Iihecking-accoum

B i, 8 interest-rate
/~ émployee N start-date

‘_length .

- ————

Fig. 2.33 : E-R diagram for banking system

Example 4 : E-R diagram for University

course
offerings

student

prerequisite
. 1 course
s _= 3
e main course

Fig. 2.34 : E-R diagram for University

46] Database Management System
Example 5 : E-R Diagram for Library System

Fig. 2.35 : E-R diagram for a library system

Example 6 : E-R Diagram for Employee

Weak .
relationship Weak entity
\\ \
Salary b .
Employee L Emp-dep NIl Dependent
Name Mo \\\
- Last name ~~ Cardinality Name DOB
First name 4 p
Assigned-to \\V//
e - Entlty
Relationship attributes
N b
i
Project Relationship
J attribute
A Y
Entity

Fig. 2.36 : E-R diagram for Employee

Example 7 : E-R Diagram for Customer

1 N
@ Customer @ | Order order-date

@ handling-cost

unit-price

product-no

Product product-name

list-price

Fig. 2.37 : E-R diagram for Customer

HH##H#HHH
® N UM E DR

L
*

I I I N7 GV

What is Data Model?
Explain the advantages of Data Model,

How many types of Data Model are there? Describe in detail.

What is Object Oriented Model? Explain its Advantages 1 Disadvantages.
Explain about OODBMS (Object Oriented Database Management System).
What is E-R Model? Mention the advantages and disadvantages of E-R model.
Explain the features of ER-Model.

Explain in detail the components of ER-diagram.

What is Attributes and explain its types.

What are keys? Explain the different types of keys in detail.

State the difference between primary key and foreign key.

. What are mapping constraints? Describe in detail.
. What is EE-R Model?

. Describe in detail the specialization and generalization.

What is aggregation? Explain with examples.

. What is the difference between Super key, Candidate key and Primary key?

Draw E.R. Diagram for Library system.
What is the main difference between Generalization and Specialization? Explain with
examples.
Draw E.R. Diagram for any employee using Entities (Employee, Department, Project,
Dependent).

Q

E

3.1. CONCEPT OF RDBMS i

Relational Database Model was introduced by E.F. Codd. In the 1960s Dr. Codd was working on
Existing Data Models. Based on his experience, he found that all the Data Models that were
prevalent at that time modeled the data in very complex and unnatural ways. Since he was a
mathematician, he started developing various types of relations in mathematical form based on set
theory and by extending his concept further, he developed the Relational Database Model and
brought it to the public in 1970.

In Mathematical Set Theory, a table made of Rows and Columns (Attributes) is defined as a
relation, in other words we can also call the relation a table. This definition only specifies what will
be stored in each column of a table; But the actvn' data is not specified in it. When we include rows
of data in this table, then we get an instance of that relation. For example, we can represent a student

relation as follows :

S.No. Name FName City Class DOB

1001 Rahul Mohan Lal Saharanpur 10 10-02-1982
1002 Rohit Sohan Lal Meerut 09 11-12-1983
1003 Pawan Rajkumar Lucknow 08 20-03-1981
1004 Madhav Ram Lal Saharanpur 10 30-02-1982
1005 Ankur Nand Lal Lucknow 07 12-12-1982
1006 Manohar Rohan Lal Meerut 10 10-11-1982

Relation looks like a flat file or a rectangular portion of a spreadsheet.

Mutual relations between the data are also defined in this model. In traditional DBMS, it takes
more time to search when there is a large number of data, as well as there is a possibility of creating
multiple copies of the data, which is called Data Redundancy. RDBMS has been developed only to
overcome these shortcomings.

The main element of RDBMS is relational database, which consists of a set of

systematically created tables.

B 3.1.1. Different term used in RDBMS

Table : In a relational database, a table is a collection of data elements, organized in terms of :

|
|
&
|

rows and columns. A table is also considered a convenient representation of a relation. But a table {

Cdu}g"/i‘/' @Y ;;sgﬁzjzgzggﬂf.:"l
TW’“MU’M: WO ST D aals B ek
! ’ Fbl3.1 TR SR L ST

SeSand 5 single entrytin a tmbleis,calladiaimsoond oxipin A il et 8
of related data. For example, the above employee table has 4 records. .
The following is an example of a single record :

101 ABC 34 15000

“The data kept in a row of any table is called record.”

Field : A table consists of a numb
number of smaller entities known as fi
and Salary.

er of records (rows), each record can be broken down into a
elds. The above employee table contains four IDs, Name, Age

Column : In a relational table, a column is a set of attributes of a particular type. The term

attribute is also used to represent a column. For example, in the Employees table, Name is a column
that represents employee names.

Name
ABC
XYZ
PQR
RST

Attribute : Attributes are the properties that define a relation. Like-1D, Name, Age etc.
Relation schema : A relation schema represents the name of the relation along with its
attributes.

~

Degree : The total number of attributes in a relation is called the degree of the relation.
Cardinality : The total number of rows present in the table.

Relation instance : A relation instance is a finite set of tuples in an RDBMS system. Relation
instances never contain duplicate tuples.

Attribute Domain : Every attribute has some pre-defined value and scope, which 1s k}lown a
attribute domain. w A

i called the schema. §

logical view of the entire database, how the data is organiz

e hips between them. Database designers design the schema so that the r can

- derstand the database and make the database usable. Normally the schema is stored in the da
oy The main function of database schema is to identify the different tables and fields c

database and also describe the relationship between the tables. It helps in identifying the
" Sub-schema : Sub-schema is a subset of the schema and the sub-schema also inherits the same

property as the schema.
It provides a window/view to the users through which he can view only that part of the database

which is required by him. Therefore, different application programs may have different views of the
data. There are two types of database schema :
(i) Physical Schema describes how the data is represented in the DBMS and how the data is stored in
the DBMS.
(ii) Logical Schema defines all such logical constraints which are applied to store data in DBMS.

B 3.1.3. Characteristics of RDBMS
(i) The name of the field / column created to store the data in RDBMS should be different from all
other fields, so that it can be identified by that name only.

(ii) All the users using the RDBMS should have the facility to create new relations as per the
requirement.

(iii) Relation database management system should implement any one type of join operation.

B 3.1.4. Advantages of relation model
(i) Simplicity : The relational data model is simpler than the hierarchical and network models.

(i) Structural Independence : Relation database is not related to any structure but only related to
data. This can improve the performance of the model.
(iii) Easy to use : Relation model is easy because it is quite natural and easy to understand a table
consisting of rows and columns.

PSS

(iv) Query capability : It makes it possible for a high level query language like SQL to avoid
\cqmplex database navigation.

(v) Data independence : The structure of the database can be changed without changing any
application.

(vi) Scalable : In relation to the number of records or rows and fields, a database should be scaled
up to increase its usefulness.

-

~ EF. Codd had made 12 mlesfm RDBM
system, then that DBMS ca pe called relationa] date el
follows : F | i vd" (g

1. Information Rule
be in the form of tables.

’ ') , "!"i""'

e _ . , _ boavah wals ¥ ‘
o '8 rule determines that 4] the information stored in the database should
ach data should have its gy table cell number, -
2. Guaranteed Access Rule :

. Thls I'ul
easily accessed. All the data shoy] dt € states that all the

data stored in the database can be
b ¢ accessed on the basis of it

s Table Name, Field Name, Primary
3. Systematic treatment of null values : M i i i
; : Man 1 i
ifite e ‘dathbase, svhich " e Yy values are omitted by us while nserting records

> null values in relati : i
neither blank space nor o, lational databases; Null value is

6. View Updating Rule : This rule s

ays that if the view shown to the u
the requirement, then this facility should

be provided by the system.
The way of logical representation of a table in relational database is called View.

7. High Level Insert, Update, Delete Rule : Thi
insert, update, delete a large number of data simultane
work can be done on only one row at a time.

ser can be changed as per

s rule says that the facility should be given to
ously in the database. It should not happen that

8. Physical Data Independence : This rule states that the programs designed to operate the

database should be independent of the physical structure of the data, that is, any change in the
physical store of the data should not affect the application program.

9. Logical Data Independence : This rule states that the view created for the end user shéuld

always be independent of the logical level program, that is, any change made in the program should
not affect the view.

10. Integrity Independence : This rule says that the data should be independent from the

integrity rule made to maintain the reliability of the data. Any changes to the integrity rules should
not affect the data.

The limitations and boundations imposed on the relational model are called constraints. Integrity
Constraints are a set of rules. It is used to maintain the quality of information. Integrity constraints
ensure that data inserts, updates, and other operations must be performed in such a way that data

integrity is not affected.
— Domain Constraint

—— Tuple Uniqueness Constraint

Relational Constraints

—— Key Constraint

Sa—. Entity Integrity Constraint <

_—» Referential Integrity Constraint
Fig. 3.2

B 3.3.1. Domain Constraints
< Domain constraints can be defined as the definition of a valid set of values for an attribute.

. % The data types of the domain include string, character, integer, time, date, currency etc.

The value of the attribute should be available in the respective domain.
Example : We are making a set of domain, in which the mobile number should be of 10 digits
and its value should not be null.

Example :

ID Name Semester Age |
1000 Tom Ist 17 |
1001 Johnson 2nd ‘ 24 |
1002 Leonardo 5th g
1003 Kate J 3rd 19
1004 Morgan 8th A

|

Not allowed, because AGE is an integer attribute

,,a'.."f'm,';zﬁmp
9 TN

Frars s £ oiiel

It does not satisfy the uniqueness constraint of relatioqél tuple as here all tuples are mm
M 3.3.3. Key Constraints

% Key is the entity set that is used to uniquely identify an entity set of entities.
< All the values of primary key must be unique.
% The value of primary key must not be null.

Example :
ID Name ; Semester Age
1000 Tom 1st 17
1001 Johnson 2nd 24
1002 Leonardo Sth 21
1003 Kate 3rd 19
1002 | Morgan 8th 22

|

Not allowed, because all rows must be unique

3.4. INTEGRITY CONSTRAINTS

Integrity constraints are used to protect the database from accidental damage. This can be
divided into two parts. :
B 3.4.1. Entity Integrity Constraints

% Entity integrity constraint states that the primary key value cannot be null.

% This is because primary key value is used to identify individual rows in relational and if the
value of primary key is null, then we cannot identify those rows.
4 A table can have a null value in addition to a primary key field.
Example :

EMPLOYEE

% In referentlal mtegnty constraints, if a‘fomgn key in Table 1
Table 2, then every value of the foreign key in Table 1 must be nu

2
'Exiiiiple 3 ' R R 1 e £ZS T OREDING : W
seiavisrnn voR &£ E i
(Table 1) ' : " r
|EMP_NAME| NAME AGE D_No —{—— Foreign key i
1 Jack 20 11 §
i
2 Harry 40 24 : ?
3 John 27 18 ——— Not allowed as D_No 18 is I
not defined as a Primary key |
4 Devil 38 13 of table 2 and in table 1 1
3 D_No is a foreign key defined f
Relationships
| (Table 1) |
PrimaryKey — 1L — p No | D_Location |
|
11 Mumbai ‘
24 Delhi ‘[
I
13 Noida ;

Fig. 3.4

Important Results
The following two important results emerge in the referential integrity constraint :
4 We cannot insert a record into a referencing relation if the related record does not exist in

the referenced relation.
% If related record exists in referenced relation, then we cannot delete or update the record of

referencing relation.

Relational algebra is a procedural query language, |
the intermediate language used in DBMS, Ap q tor can be

relationships as their inputs and generate relationships as outputs. Rel »
| recursively on a relational and intermediate results are assumed to be relational as
Types of Relational Operation - s

Select Project Union

2 Set t
Operation Operation 3 g

Cartesian Rename
Operation Intersection Difference

Product Operation

B 3.5.1. Union (L) :

Union operator is represented by the U symbol. Its syntax is as follows : [R=P U Q]
Where P and Q are two input relations and R is the output relation.

Union Operation has two input relation which is union compatible. The output relation of these

operations contains those tuples (Row) which are in Relation 1 and Relation 2 and which are
duplicate tuples, they are destroyed or eliminated.

Example :

R

Al -1

B |42 ' R UNION S

D |3 [--- : — A | 1

Fl a el » B | 2

E|s L —lc |2
—H o T T

s i h—E s

A 1 ——-:-~—' e 4

Cl2 : E| 4

p|a3}--- l

E | ‘4]

A Te B
AnfHA
il 5 o

A

Ve

¥l S
C’-._ Y

B 3.5.2. Intersection (M)

This operator is represent
two relations. Its syntax is as fo

ed by the symbol N . This operator is used to select common

llows : [R=PNQ]

tuples from

Example :
R
A 1
B 2 R INTERSECTION S
D 3 A 1
i D | 3
E 5
S ——
A 1
C 2
D 3 |°
E 4
Example :
Table A Table B
Column 1 Column 2 Column 1 Column 2
1 1 1 1
1 2 1 3

ﬂ\ o

,;‘

et
| B2 R DIFFERENCES ‘
D/| 3 B 2 o o
e ARSI TRRIIRE SHTE a*-w 25%
ELEYIN MuTEiEI T IR
S
Al 1 S DIFFERENCE R
o 2 C 2
D 3 E 4
) el
Example :
Table A Table B |
Column 1 | Column 2 | Column 1 | Column 2
1 1 1 1
1 2 1 3
C=A-B
Table A — B B
Column 1 Column 2
1 2

W 3.5.4. Cartesian product (x)

This operator is represented by the x symbol. Its syntax is as follows : [R =P x Q]

This operator is used to combine information from two different relations into one relation.

B e ——

shY

3 | Database Management System

oS A By RCROSSS = .
' Al Al1]A]1 P B g
SELECT *
1 X [|
FROM A B|2 Al1fc]2 Flilcl2
2| | ¥ |crossvomns | ' Y plal {Al1]ols]| [F]*io]3
i L e ela] fal1]els]l |FlELLels
2 X E|s Bl2]A]1 E[s]Aa]3
ey s B[2]c|2 ELeTC1 e
i i aF Bl2|p]3 E|ls5|D|3
S Bl2|E]|4 EISTEL S
(o8 i
i/ D|3]|A]1
D3
L SR R R T
E| 4
op & B
p[3|E]4

3.6. ADDITIONAL RELATIONAL ALGEBRAIC OPERATIONS
(PROJECTION, SELECTION ROWS, DIVISION, RENAME AND JOIN)

B 3.6.1. Projection (n)

This operation is represented by the symbol =, (pi). It is a unary operation i.e. it has only one
relation.

Projection operator is used to select a subset of attributes from a relation and the attributes which
are not selected are eliminated. It projects the column(s) that satisfy a given predicate.

Notation — T Al, A2, An (r)
Where Al, A2....An are attribute names of relation r.

Duplicate rows are automatically eliminated, because relational is a set.
Example : CUSTOMER RELATION

Name Street City
Jones Main Harrison
Smith North Rye
Hays Main Harrison
Curry North Rye
Johnson Alma Brooklyn
Brooks Senator Brooklyn

Input :

1. t NAME, CITY (CUSTOMER)

Name City
Jones Harrison
Smith

Rye

n o-bluts mhr (m’ibh) Selects M:_M;m-ﬂ or nan
bOOk& SISO BT A ‘,r"‘. eyl oy 3“) Rumis st i ")ﬂ.}: iy GE NG Uf’t_’:ﬁ;ﬁ “araun "‘Q m
. 3&2 M(O) it IO 2ARRNT Wie Pl ilaTay Sk o 5 {'i;t?ﬁf c3! m’}"fw.
The selection operatlon selects tuples that sausfy a given predicatz It is denoted by sigma (G).

This operator is used to select tuples which satisfy the given condition. This operation is ‘*“Y
operation which is defined in only one relation or table.

Notation : ¢ p(r)
Where o is used for selection prediction.
r is used for relation.

pis used as a prepositional logic formula that can use connéctors; For example: AND and OR and
NOT, these can be used as relational operators like =, >,<,<,>, as.

For example : LOAN Relation

Branch_Name - Loan_No Amount
Downtown : L-17 1000
Redwood L-23 2000
Perryride L-15 1500
Downtown L-14 1500
Mianus L-13 500
Roundhill L-11 900
Perryride L-16 1300

Input : 0 BRANCH NAME = “perryride” (LOAN)
Output :
Branch_Name Loan_No 4 Amount
Perryride L-15 1500
Perryride ; L-16 ‘ - 1300

N

For example :
l. o subject = “database” (Books)
Output : Selects tuples from books where subject is ‘database’.
2. o subject = “database” and price = “450” (Books)
Output : Selects tuples from books where subject is ‘database’ and ‘price’ is 450.
3. o subject = “databaése” and price = ,'“450” or year > “2010” (Books)

Beia ity wilk) welEtEE A
; ;

" The ‘Rename’ operation is denoted with the small Greek letter rho (p). This operator ;
metherelaﬁon.kemmopmtionallows'remmingofthcoutpmrelum nosster THE N

Notation—p x (E) ;
where the result of the expression with the name x is saved.

M 3.6.5. Join

This operator combines two relations into a new relation.

Join operators follow the combination of two relations to obtain a new relation, the operand
relations that participate in the tuple operation and contribute to the result. A join operation combines
tuples related by different relations, only if the given join condition is satisfied. It is denoted by ><.

5 ¥

Types of join operations : Join operations are of the following types :
; Join Operation

i |

Natural Join Outer Join Equi Join
Left Outer Join

Right Outer Join

Full Outer Join

Example :
Employee' 0w =
Emp._Co\;le Emp Name_
101 Stephan
152 Jack
103 Harry
SALARY 1. N _T/
Emp_ Code Emp Name-S
101 50000
102° 30000
103 ‘ 25000

o000

Operation : (EMPLO < AR

1. Natural Join—
& It is denoted by p<.

Example : Use the above EMPLOYEE table and SALARY table.

Input :

‘% In natural join if there will be common attribute inside two tables and if their data match then we
will get their tuples in the output.

% If the data of our common attribute matches, then all the data correspondmg to those tuples
will be merged in one table. :

% Natural join is similar to equil join, the only difference is that one of the duplicate column is

removed.

% It is denoted by p<.

Query :

Select sub id, faculty, Subject, stud id, name from course, registration where course. Subject =

Registration. Subject;

SUB ID Faculty Subject - Stud ID Name
1 Ram VB 1003 Rita
Rani Java 1002 Shyam
4 Ankit e 1001 Saurabh

2. Theta join

« Theta join is a variant of inner join.
% In Theta join, we will join tuples according to the condition.
% The comparison operator is used to apply the condition. Example : =, <, >, <, > etc.

% Theta join combines tuples from different relation provided they satisfy the theta condition.

1.t EMP_NAME, SALARY (EMPLOYEE < SALARY)

Output :

Emp_Name Salary
Stephan 50000
Jack 30000
Harry 25000

s Sosek S L i

et

AN

— e N

" Civil line

Park street

Pt '{"i,,)‘nigt
A OV OAE ";lrr

S L

Ravi M.G. Street : ' ‘
3 § Lo b3 B R I ¢ LT § b A e
Hari Nehru nagar Hyderabad : ' :,
FACT_WORKERS ‘ 7
R ke Newe [RS et IO
Ram Infosys
Shyam Wipro
Kuber HCL
Hari TCS
Input : (EMPLOYEE < FACT_WORKERS)
Output :
Emp_Name Street City Branch Salary ”[:
Ram Civil line Mumbai Infosys 10000
Shyam Park street Kolkata Wipro 20000 i
Hari Nehru nagar Hyderabad TCS 50000
An outer join is basically of three types :
1. Left outer join
2. Right outer join
3. Full outer join 2
Course
Sub. Code Subject Faculty
01 VB Ram %
02 DBMS Ruchi
03 Java Rani
04 C++ Ankit
05 Oracle Devendra
Registration ;
STUD ID Name Subject
1001 Shaym Java

(a) Left outer “.‘fﬁf THma

the right side, it is displayed as Null.

Query : Select* from course, registration where course. Subject = Registration. Subject (+);

Result :
—-Sub¥D- - - —Subject-- | Taeeea
1 VB Ram 1003 Rita VB
2 DBMS Rani Null Null Null
3 Java Ritu 1001 Dhirendra JAVA
4 Gt Ankit 1002 Sauarabh C+
5 Oracle Devendra Nuil Null Null
% Itis denoted by p<.
Example : Using the above EMPLOYEE table and FACT_WORKERS table
Input : EMPLOYEE FACT_WORKERS
Emp_Name Street City Branch Salary
Ram Civil line Mumbai Infosys 10000
Shyam Park street Kolkata Wipro 20000
Hari Nehru street Hyderabad TCS 50000
Ravi M.G. street Delhi NULL NULL
Example 2 :

(b) Right outer join :

% In Right outer join, all the records of the tables on the right side of the join condition are

displayed. The matching record is displayed on the left side of this type of condition.

% For those records in the tables on the right side of the Join condition that have no matching

on the left side, it is represented by Null.

Query : Select* from course, registration where course. Subject (+)

= Registration. Subjct

' 64 | Database Management System

Result :
Sub ID Subject Faculty | Stud ID Name
1 VB Ram 1003 Rita
2 Java Ritu 1001 Dhinendra
3 C++ Ankit 1002 Saurabh
Null Null Null 1005 Pooja
Null Null Null 1004 Monika MIS
< It is denote by p< .

Example : Using the above EMPLOYEE table and FACT WORKERS Relation

Input : EMPLOYEE < FACT_WORKERS

Output :

Emp_Name Branch Salary Street City
Ram Infosys 10000 Civil line Mumbai
Shyam Wipro 20000 Park street Kolkata
Hari TCS 50000 Nehru street Hyderabad
Kuber HCL 30000 NULL NULL

(c) Full outer join :
& Full outer join returns all the records of both the tables whether there are matches in Left

table and Right table; If there is no match then ‘Null” (no value) is returned.

< Full outer join and full join are the same.
% This join has the potential to return a much larger result-set.

< It is denote by >« .

Example 1 : Using the above EMPLOYEE table and FACT_WORKERS table

Input : EMPLOYEE < FACT_WORKERS

Emp_Name Street City Branch Salary
Ram Civil line Mumbai Infosys 10000
Shyam Park street Kolkata Wipro 20000
Hari Nehru street Hyderabad TCS 50000
Ravi M.G. Street Delhi NULL NULL
Kuber NULL NULL HCL 30000

3. Equi join : It is also known as inner join. It is based on the matched data according to the

Example 2 of Full outer join

The class table,

equality condition. equi join uses the comparison operator (=).

Noida

Panipat

Full outer join query will be like,

Select*From class full outer join class_info on (class.id = class_info.id);

The resultset table will look like,

ID Name ID Address
1 Abhinav 1 Delhi
2 Adam 2 Mumbai
3 Alexa 3 Chennai
4 Anuvisha null null
5 Ashish Mishra null null
null null 7 Noida |
null null 8 Panipat |
Example : CUSTOMER RELATION
Class_ID Name
John
Harry <7
3 Jackson ‘

| B PRODUCT

Product_ID

{(Viwalinsud

B e

66 | Database Management System
2 : Mutili);i
3 Noida

Input : CUSTOMER >« PRODUCT

Output :
Class_ID Name Product_ID City
1 . John 1 Delhi
2 Harry 2 Mumbai
3 Jackson 3 Noida

3.7. RELATION CALCULUS

In relational algebra, query is procedural. Whereas relational calculus is a non-procedural query
language. In non-procedural query language, the user is concerned with how to obtain the end
results. In relational calculus, the query is represented as a formula consisting of a number of
variables. A relational calculus is a query system where querys are represented in the same way as
formulas with variables in them. Relation calculus has two parts :

Types of Relational Calculus

| [Relational Calculus }
; Tuple Relational Domain Relational
Calculus Calculus

Fig. 3.5

M 3.7.1. Tuple Relation Calculus (RTC)

Tuple relational calculus is specified to select tuples in relation. In TRC, the filtering variable
uses tuples of a relation.

The result of a relation can contain one or more tuples.

{T | P {T} or {T| Condition (T)}

Where T is the resulting tuples and P(T) is the condition used to fetch T.
For example : {T.name | Author(T) AND T.article = ‘database’ }

OUTPUT : This query selects tuples from AUTHOR relation. It returns a tuple with the 'name'
of the author who wrote an article on 'database'.

|
:]
TRC (tuple relation calculus) can be quantified. In TRC, we can use existential |

3 .
quantifiers (V) . (3) and universal

Fot example : {R |3T € Authors (T.article = ‘database’ AND R.name=T .name)}

Output : This query will give the same result as the previous one.

Quantifiers (V) to bind variables.
43554, |P(ay,a, »a3,...,a,)}
Where a, , a, are attributes

Notation : {g, 4,

» Page, subject > | e hinditutorialspoint A subject = ‘database’}

3.8. CONVERTING E-R MODEL TO RELATIONAL MODEL

E-R Model is converted into Relational Model. Thi
implemented by RDBMS like MySQL, Oracle etc.

The following rules are used to convert the E-R Model into a table :
Rule 1 : For strong entity sets with only simple attributes :

< Strong entity sets with only simple attributes would require only one table in the relational
model.

% The attribute of the table will be the attribute of the entity set.
% The primary key of the table will be the key attribute in the entity set.

Student

s is because relational models can be easily

Roll_no Name Gender

Schema : Student (Roll_no, Name, gender)

Rule 2 : For Strong Entity Sets with Composite Attributes : .

A Strong Entity Set with any number of composite attributes would require only one table in the
relational model. ' . ; :

When performing the conversion, the simple attribute of the composite attribute is taken into
account and not the composite attribute itself.

4 Roll_no | First_name | Last_name | House_no | Street City

. Fig. 3.6—First Name, Last name, House no, Strect, City

E Rule 3 : For Strong Entity Sets with Multivalue Attributes :
Strong entity sets with any number of multivalue attributes will require two tables in the
: relational model—
: % A table will have all the simple properties with a primary key.
& Other tables will contain the primary key and all multivalue attributes.

Roll_no City Roll_no Mobile_no

Rule 4 : Translating relationship sets into tables :
In the relational model a relational set would require a table.
The attributes of the table will be :
< The primary key attribute of the Participating entity set.
% Its own descriptive attribute, if any.
% The set of non-descriptive attributes will be the primary key.

g

— % Schema : Works in (Emp_no,

Note : If we consider the overall
model :

% One table for the “Employee” entity set ny A&
% One table for the “Department” entity set 8} 8.5
% For a table ‘works’ relationship set i

Dept_id, since)
E-R model, then three tables will be requi

in the relational

Rule 5 : The following four cases are possible for a binary relationship with cardinalify ratno 3
Case 1 : Binary relationship with cardinality ratio m: n

Case 2 : Binary relationship with cardinality ratio 1 : n

Case 3 : Binary relationship with cardinality ratio m: 1

Case 4 : Binary relationship with cardinality ratio 1: 1

Case 1 : For binary relationship with cardinality ratio m: n
Here, three tables will be required :

1. A(ala,)

2. R(ay, by)

3. B(by,b,)
Case 2 : For binary relationship with cardinality ratio 1: n

Here, two tables will be required :
1. AR (a;, a3, b))

2.B (by,b,)

Note : Here, combined tabl
Case 4 : For binary relationship with ¢

e will be drawn for the entity set A and relationship set R.

ardinality ratio 1 : 1

e ‘R with<4’or ‘B’

Here two tables will be required : Either combin

Way-01—
1. AR (ay,a,,b;)
2. B(by, by)
Way 2—
1. A(ayay)
2. BR(a,,by,b;)
Thumb Rules to Remember
While determining the minimum number of tables required for binary relationships with gi
cardinality ratios, following thumb rules must be kept in mind : i
% For binary relationship with cardinality ration m: n, separate and individual tables will be d
for each entity set and relationship.

< For binary relationship with cardinality ratio either m: 1or 1: n, always remember “many side
consume the relationship” i.e, a combined table will be drawn for many side entity set

relationship set.

% Decaeof e el sl s e Rt

NULL constraints in foreign keys, e R
Case 1 : For a binary relationship with cardinalj Lo
on one side : : w1th % ahty‘constra‘mts m{total, ‘

-

: Ay

eyl o

Since the cardinality ratio =1 - n, we will combine the entity set Band the relationship set R here.
Then, two tables will be required :

1. A (a,, a,)
2.BR (a;,b,, b,)

\

Because of total participation, foreign key a,
now.

has acquired NOT NULL constraint, so it can’t be null

Case 2 : For a binary relationshi

p with cardinality constraints and total participation constraints
on both sides :

 If there is one key constraint on both sides of the entity set with total participation, the
binary relationship is represented using only one table.

T o

Here, only one table is required.
< ARB (a,,a,,b,, b,)
Rule 7 : For binary relationships with Weak entity sets :

v

SR Lo

Solution : Applying the rules, minimum 3 tables will be required :
< MRI1 (M., M, ,M;,P)

& P(P,P,)

% NR2 (N,, N,)

Problem 2—Find the minimum number of tables required to represent the given ER diagram in
relational model :

Solution : Applying the rules, minimum 4 tables will be required :
% AR\R, (ay, a5, by, ¢))
% B (b, b,)
% C(eg,c3)
“ R3 (b,, c,)

gl >

Solution : Apply the rules, minimurn 5 tables will be required ‘ Mo
* BR R,R; (b,, by,ayc,, d,) et
.:. A (al ’ az)

* CR3 (cl’CZ,dl)
> D (dl ’ dz)

Problem 4 : Find the minimum number of tables required to represent the given ER diagram in
relational model. oA

Solution : Applying the rules, minimum 3 tables will be required :
* E (ay,a,)
* EyR\R, (by, by, ay,¢y, b3)
* E;(ey,¢3) ;
Problem 5 : Find the minimum number of tables required to represent the given ER diagramin
relational model.

74 | Database Management System

Depositor

c_name

Solution : Applying the rules that we have learnt, minimum 6 tables will be required :
<+ Account (Ac no, Balance, b name) ¢ Branch (b name, b_city, Assets)
< Loan (L no, Amt, b name) < Borrower (C name, L no)

<% Customer (C name, C_street, C_city) % Depositor (C name, Ac no)

What do you understand by relational database model?

Explain the characteristics of RDBMS.

Explain in detail the advantages and disadvantages of relational model.
Explain Codd’s rules in detail.

What are Constraints and how many types are there?

i e

What do you understand by Relational Algebra? Explain relational operations in detail with
examples.

Explain Projection (1) with example.

% =

. Explain Selection (o) with example.

9. What are Join operators and how many types are there?
10. What do you understand by relational calculus? Explain its types in detail.

RELATIONAL
'DATABASE DESIGN

RDBMS is a database management system based on the relational model. RDBMS is a database
that stores dafa In a structured format. By doing this it becomes very easy to locate and search any
value st.ored in the database. It is called “Relational” because whatever values and data are stored in
a table in the database, they are all related to each other. The data of a table is related to each other,
as well as, many tables of the database can also be related to each other. This relational structure of

RDBMS makes it possible to run queries on many tables simultaneously. RDBMS is also called a
subset of DBMS.

4.1. INTRODUCTION TO NORMALIZATION

There are two main approaches to designing relational databases, in which Normalization
collects all the attributes of the database at one place and further decomposes them on the basis of
functional dependency, transitive dependency and multi-value dependency etc. It is divided into
small relations. The connection of these small relation is called relational database. Normalization
was first introduced by Codd in 1972. Database normalization is the process of analyzing relational
schemas based on their functional dependencies and primary keys.

Normalization is the process of preserving and handling relationships between data to reduce
redundancy in relational tables and to protect the database from unnecessary anomalies such as
inserts, updates, and deletes. It helps to divide large database tables into smaller tables and create
relationships between them. It can remove redundant data and make it easier to add, manipulate or
delete table fields. It is a technique for organizing data in a database. Normalization is a systematic
approach of decomposing tables to reduce data redundancy (repetition) and eliminate undesirable
attributes such as anomalies in insertion, update and deletion of data. It is a multi-step process that
inserts data into tabular form and removes duplicate data from related tables.

“Normalization is a systematic approach of decomposing tables to eliminate undesirable attributes
such as data redundancy (iteration) and insertion, update and deletion dependencies.”

Normalization is mainly used for two purposes :

% Removing Unwanted Data.
% Data dependencies make sense by ensuring that data is stored logically.

In DBMS, Normalization is the process of organizing data, Normalization is 2 steps process :

1. In the first step, it eliminates redudant data (data that is stored more than once) from the
relational table.
2. In the second step, it ensures that only relevant data is stored in the table.

+ Con mmmmmmmmm

W 4.1.2. Normalization Benefits in Database
Its main objective is to achieve the following characteristics :
@ It is used to remove duplicate data and database anomalies (Insertion, Deletion,
Modification) from relational tables.
< Normalization helps reduce redundancy and complexity by checking for new data types used

in tables.
It is helpful to divide large database tables into smaller tables and maintain relationships

between those tables.
< It avoids duplicate data or any repeating groups in a table.

< This reduces the possibility of anomalies in a database.
< Performance Improvement.
4 Query optimization.

B 4.1.3. Types of Normal Form
Edgar F. Codd proposed three Normal Forms which are called INF, 2NF and 3NF. A concrete

definition of 3NF (Third Normal Form) as Boyce—Codd Normal Form (BCNF) was proposed by
Boyce and Codd in 1974. All these normal forms are based on functional dependencies between the
attributes of a relation. After this Fourth Normal Form (4NF) and Fifth Normal Form (5NF) were

propounded, which are based on multivalue dependency and join dependency :

<

O N T R

< First Normal Form (1NF)

% Second Normal Form (2NF)

% Third Normal Form (3NF)

< Boyce-Codd Normal Form (BCNF)
% Fourth Normal Form (4NF)

4 Fifth Normal Form (5NF)

4.2. DATA REDUNDANCY

Data redundancy is a condition created within a database or data storage technology, in which
similar data is stored in two different locations.

This can mean two different fields within the same database, or two different spots in multiple
software environments or platforms. Whenever data is duplicated, it basically constitutes data
tedundmcy Data redundancy can happen accidentally but is also done intentionally for backup and

7900734858 | G
7300036759 |

7300901556 | GEU |

wchhs :;:a ;anl:ds:m p“r::b lvalues of attribute CollegeName, Colkgeklik, Course are getting repeated
0 ems. The problems caused by redundancy are; Insert Anomaly, Delete
Anomaly and Update Anomaly. ki s

W 4.2.1. Data Redundancy Disadvantages

< Possible data inconsistency
% Increase in data corruption
% Increase in database size
< Increase in cost

W 4.2.2. Anomalies

The pr_oblem arising in any system due to data redundancy in any Table/Relation is called Anomaly.
Problems like storage space and Data Inconsistency arise due to data redundancy in Table/Relation.

4.2.2.1. Insertion Anomaly

If the details of a student are to be inserted whose course is yet to be decided, the entry will not
be possible until the course for the student is decided.

Student ID
100

Course Rank
GEU 1

Contact
7300934851

Name College

Himanshu

This issue occurs when entry of a data record is not possible without adding some additional
unrelated data to the record. Anomalies occur when there is too much redundancy in the database.
Anomalies can be of various types which can occur in referenced and referencing relation.

Example : If a tuple is cast to referencing relation and the referenced attribute value is not
present in the referenced attribute then it will not allow to insert into the referencing relation. For
example, if we try to insert a record with STUDENT_COURSE ceW STUD NO = 7, it will not

allow.

STUDENT
STUD_NO | STUD_NAME | STUD_PHONE | STUD_STATE | STUD_COUNT | STUD_AG
1 Ram 9716271721 Haryana India 20
2 Ram 9898291281 Punjab India 19
3 Sumit 7898291981 Rajasthan India 18
4 Suresh Punjab India 21

&wémmmm-mwuqm ﬁ
 supplying the value of Primary Key in any Table/Relation. : .
- Example : mmmsmn:emormm-n.mmummum 3
%ut have a branch or enroll.
4.2.2.2. Deletion Anomaly

If students details are deleted in this table then college details will also be deleted which should
not happen by common sense.

This discrepancy occurs when the deletion of a data record results in the loss of some unrelated
information that was stored as part of the record that was deleted from a table. It is not possible to
delete some information without losing some other information in the table.

In this type of Anomaly, by deleting a tuple/row from a Table/Relation, if there is loss of
important information from the related Table/Relation, then it is called Deletion Anomaly.

4.2.2.3. Updation Anomaly
Suppose, if there is a change in the rank of a college, then all the databases would have to be
changed, which would be time consuming and computationally expensive.

Student_ID Name Contact College Course Rank
100 Himanshi r i T | GGP Diploma 1
101 Manisha 79......38 GGP Diploma 1
102 Annu 13....599 GGP Diploma \
103 Anshika ¢ el GGP Diploma 1

If the updation does not happen at all the places then the database will be in an inconsistent
state.

This type of Anamaly arises due to Data Redundancy. In this it is more difficult to update
Redundant Information. Data Inconsistency arises due to Update Anomaly.

4.3. FUNCTIONAL DEPENDENCIES AND DECOMPOSITION

Functional dependency is a relationship that exists between two attributes. It usually exists
between a primary key and a non-key attribute within a table.

X—Y
~ The left side of FD is known as a determinant, the right side of production is known as &

e ; S 4i¥ : : 3 3 &
Let’s say we have an employee table with attributes: Emp_Id, Emp_Name, Emp_Address.

Emp_Id attribute can uniquely identify Emp Name attribute of employee table because if we know

Emp_Id, then that employee’s name is associated with it.
- Functional dependency can be written as :
1. Emp_Id - Emp_Name
We can say that Elﬁp'_Naﬂie' is functionally dependent on Emp_Id.
M 4.3.1. Types of Functional Dependency

24 L0

Wav: il e

Functional
Dependency
l
l SEY
Trivial Non-trivial
Functional Functional
Dependency Dependency
Fig. 4.1

4.3.1.1. Trivial Functional Dependency
A — B has trivial functional dependency if B is a subset of A.
% The following dependencies are also trivial, such as A — A, B— B
Example :
1. Consider a table with two columns Employee_Id and Employee Name.
2. {Employee_id, Employee Name} — Employee Id is a trivial functional dependency as
Employee Id is a subset of {Employee_Id, Employee_Name}.
3. Also, Employee Id — Employee Id and Employee Name — Employee Name are trivial
dependencies too.
Example :
A =10, 20, 30, 40, 50 B = 20, 30, 50
Here the value which is in A is also in b so we can say that b is subset of A=A>B
% The attribute we give (A—> A)in Trivial Functional Dependency, we will get A only.
% There are two attributes X and y in this Trivial Functional Dependency, so the value which
will be in X, will also be in value y.
% That is, the value which will be in the left side will also be in the right side.

W | Database Management System

~4.3.1.2. Non-Trivial Functional Dependency 1 Y
& A — Bhas a non-trivial functional dependency if B is not a subset of A.

< When A intersects B is null, then A — Bis said to be complete non-trivial.
& In Non-trivial Functional Dependency, there will be nothing common in the attributes of

both the sides.
XAY =0
Example :
1. ID — Name,
2. Name - DOB
AB-> CD A->B

Example: A->BC
& In Non-trivial Functional Dependency, the attribute of right side and left sid
different.
» AB -> CD can also be because both sides can have more than one attribute.

°o*

B 4.3.2. Inference Rule (IR) for Functional Dependency

& The Armstrong’s axioms are the basic inference rule.
< Armstrong axioms are used to eliminate functional dependencies on relational dat

& Inference rule is a type of assertion. It can apply to a set of FDs (functional depen

derive other FDs.
% Using the rule of inference, we can derive wdditional functional dependencies from the initial

e will always be

abases.
dencies) to

set.
The functional dependency has 6 types of inference rule :

1. Reflexive Rule (IR)
In the reflexive rule, if Y is a subset of X, then X determines Y.

IfXoYthenX—>Y

Example :
X={ab,c,d,e}
Y =

{a, b, c}
2. Augmentation Rule (IR ;)
The augmentation is also called as a partial dependency. In augmentation, if X determines Y, then XZ
determines YZ for any Z.
If X—> Y then XZ > YZ

Example :
For R (ABCD), if A — B then AC — BC

3. Transitive Rule (IR ;)
In the transitive rule, if X determines Y and Y determine Z, then X must also determine Z.
IfX>YandY—>ZthenX > Z

4. Union Rule (IR)
Union rule says, if X determines Y and X determines Z, then X must also determine Y and Z.

mposmonm];“,m“,aknownas L e

Deco project rule. It 1sthemv

determines Y and Z, mmXMmesYandXdetcrmmesZsepamely
If X— YZthenX-—)YandX_)z S T

Proof : :
s | | oitiang By k 4 5
2.YZ—- Y (using IR, rule) n blinig S
3.X—>Y (using IR on 1 and 2)
6. Pseudo Transitive Rule (IR¢)

In Pseudo Transitive Rule, if X determines Y and YZ determines W, then XZ determines w.
IfX—> Y and YZ - W then XZ — W

Proof :
1. X =Y (given)
2. WY — Z (given)

3. WX — WY (using IR, on 1 by augmenting with W)
4. WX — Z (uing IR on 3 and 2)

M 4.3.3. Relational Decomposition
When we do normalization of a table or relation, if a relation or table does not fulfill the criteria
of any normal form, then we decompose that relation, that is, divide it into multiple relations.
“ Decomposition is the process of breaking down into parts or elements.
< It replaces any relation with smaller relation i.e. converts it into multiple relation.
With Decomposition, we can break the database table into multiple tables.

When a relation in the relational model is not in the normal form, then decomposition of the
relation is required.

< In a database, it breaks the table into multiple tables.
If the relation does not have a proper decomposition, it may result in loss of information.

Decomposition is used to eliminate some of the problems of bad design such as anomalies,
inconsistencies and redundancy.

o,

%

o’
0’0

K3
0.0

®,
0’0

s ek 1oy o SEE e ang)

sftraely ¥ 4

-
Lossless Dependency
Decomposition Preserving
Fig. 4.2
B 4.3.3.2. Lossless Decomposition
When data normalization is done in a table or relation, if there is no loss of information or data
in it, then it is called non-loss or loss less decomposition.
removed and it is also

““Loss less Decomposition’’ is such a process in which duplicate data is

seen that there is no loss of original data.
added to it i.e. extra data is not

& After decomposing a relation or table, if extra data is not
generated then it is called lossless decomposition and if extra data is added or same

information is repeated then it is called lossy decomposition.
& After decomposing a relation, there should be a common attribute in both those tables.

& If after decomposing R into (r; and r,) merge it then
R, "R, =R, or R, NR, =R,
In either of the two tables, it should react like a key.
Lossless decomposition guarantees that the join of relations will

that were decomposed.
A relation is said to be a lossless decomposition if the natural joins of all decompositions

produce the same relations

give the original relation.

Example : Employee_Department T able :
EMP_ID | EMP_ NAME | EMP_AGE EMP_CITY DEPT_ID DEPT_NAME
22 Denim 28 Mumbai 827 Sales
33 Alina 25 Delhi 438 Marketing
46 Stephan 30 Bangalore 869 Finance
52 Katherine 36 Mumbai 575 Production
60 Jack 40 Noida 678 Testing

The above relation is decomposed into two relations EMPLOYEE and DEPARTMENT.

678

Testing

Now, when these two relations will be

relation will look like this :

joined in common column “EMP_ID”, the resulting

Employee (><) Department
EMP_ID EMP_NAME | EMP_AGE EMP_CITY DEPT _ID |DEPT_NAME
22 Denim 28 Mumbai 827 Sales
33 Alina 25 Delhi 438 Marketing
46 Stephan 30 Bangalore 869 Finance
52 Katherine 36 Mumbai 575 Production
60 Jack 40 Noida 678 Testing

Therefore, decomposition is involved in lossless decomposition.

Lossy Decomposition
After decomposing a relation or table, if extra data is added to it, that is, extra data is generated,

then it is called lossy decomposition.

B 4.3.4. Attribute Preservation

While doing decomposition, it has to be ensured that each attribute of R must be included in at
least one relation schema R of the decomposition D, so that no attribute is lost. In other words, the

union of all relations in D must be equal to R, that is :
R= Rl UR2) ...URn
This attribute or condition is called Attribute Preservation in a decomposition.

s that every relation R, of the 1 Dis in.
normal fonn(BCNF)Altpoughthls not in itself a g
: , it is a desirable 'quaiify."We must look at the decomposition
elation as a whole and at the same time look at its individual relations. v
4.3.4.1. Dependency Preservation - 7} (g
It would be nice and useful if every functional dependency X — Y of the set F could either be
directly included in a relation schema R, of the decomposition D or could be deduced from a functional
dependency included in a relation R,. This property or condition is called Dependency Preservation
Condition. -

We want to preserve functional dependencies because each dependency expresses a constraint on
~ the database. .If no dependency is included in any relation R, of the decomposition D, then we
cannot impose that condition on that relation alone. For this, we have to join many relations, so that
all the attributes involved in that dependency come together.
< This is an important constraint of the database.
% In dependency preservation, at least one decomposed table must satisfy each dependency.

<% If a relation R is decomposed into relations R, and R, then the dependency of R must be a
part of R, or R, or derived in conjunction with the functional dependency of R; and R,.

» For example, suppose there is a relation R (A, B, C, D) with a functional dependency set
(A-> BC). The relational R is decomposed into R, (ABC) and R, (AD) which is dependency
preserving because FD is a part of the A->BC relation R; (ABC).
4.3.4.2. Decomposition using Functional Dependencies

While decomposing a relation, we have to keep in mind that the functional dependencies given
in it are being preserved. Such decomposition is called functional decomposition using functional
dependencies. '

If a decomposition is not preserving dependencies then any dependencies are lost in that
decomposition. To check the presence of that missing dependency, we have to join two or more
relations, so that all the attributes of left and right side of that dependency come. Then it will be
checked whether this dependency is applying to that resulting relation or not. Obviously it is not
practical to do such a test. But techniques are available, following which one can ensure that all
functional dependencies are preserved in a decomposition.

4.3.4.3. Lossless Join

Another desired property of a decomposition is that it should have the lossless join property,
which states that when natural joins are performed on any of the relations in that decomposition, no
spurious tuples are produced. This condition must hold for every legal relation state that satisfies the
set F of functional dependencies. Thus the lossy join property is always defined in terms of a
particular set F of functional dependencies. This property is also called non-additive join property.
There is a certain check method to check for the existence of this property.

g

-,

*,

It is worth noting here that the term lossless refers to the loss of information, not the loss of
tuples. If a decomposition did not have the lossy join property, we could get a lot of bogus tuples
from a join operation, which would introduce incorrect or invalid information.

M 4.4.1. First Nor m (INF)
According o the current def;

Form (INF). In fact its definition

their combinations out of the re

if all of its attributes are atom;
hence its domain is called ato

Form (INF). mic domain. In other words, a relation is not allowed to be in First Normal
4 DEPARTMENT
L Dname Dnumber Mgr_Empno

Fig. 4.3 (a) : Department relation schema

& Fr?; :Xar;zle',_ C(l))nsider the relation schema DEPARTMENT shown in the figure above. In this
primary key' is Dnumber. Suppose we extend this schema by adding an attribute Dlocations to it

as in F.lg. 4.3(b). W‘? recognize that each department may span more than one location. For example
a relation state of this is also shown in Fig. 4.3(b). ’

DEPARTMENT
Dname Dnumber Mgr_Empno Dlocations
Dname Dnumber | Mgr Empno Dlocations
Administration 1 30424 {First Floor}
Training 2 25214 {Basement, First Floor, 2nd Floor}
Info. Tech 3 29658 {Basement}

Fig. 4.3 (b) : Extended Department relation schema and one of its relation states

We can see that this relation is not in INF, because its Dlocations attribute is not Atomic, but a
set of values. In fact, it doesn't even deserve to be called a relation according to our definition.

There are three main techniques to convert this relation into first normal form, which are as
follows :

I. Remove the attribute Dlocations that violates INF and place it in a separate relation
DEPT_LOCATIONS with the primary key Dnumber of DEPARTMENT. The primary ‘key’
of this relation will be the combination of Dnumber and Dlocation as shown in Fig. 4.3 (c). It is
clear from the given relation state that a unique tuple is available for each location of a
department. Thus we have decomposed a INF inferior relation into two INF relations.

A

s
- i-,':"

" 2. Expand the primary key of the original relatio

"

o [35T AR ¥

i : n Sy s Wl *:'::",scu"'a. fBﬁ L
: _Fm.q.a(c):ScMmqmdepﬁonmmaeommlﬂony o R
n DEPARTMENT so that it contains a separate

tuple for each location of the department, as shown in Fig. 4.3 (d) below. In this casethg
primary key of the relation becomes {Dnumber, Dlocation}. There is a drawback m‘thig

solution that Redundancy is generated in the relation.

P

Dname Dnumber Mgr_Empno Dlocation i
Administration 1 30424 First Floor
Training 2 25214 Basement
Training 2 25214 First Floor
Training 2 25214 2nd Floor
Info. Tech. 3 29658 Basement

Fig. 4.3 (d) : State of Department relation after key expansion
‘Key’ becomes { Dnumber, Dlocation}. There is a drawback in this solution that Redundancy is

generated in the relation.

If the problem attribute has a known maximum number

in at most 3 locations, then that attribute Dlocations is as
example, replace it with Dlocation], Dlocation2 and Dlocation3, each of which will have an

Atomic value. A drawback of this solution is that the tuples contain many NULL values, since
most of the departments are in one or two locations. Creating queries for such attributes also
becomes more difficult, as a value can occur in any number of attributes and we have to

account for each in the query. ¢
It is clear from this discussion that out of the above three solutions, the first solution i.e.
decomposing the relation into multiple relations is the best because there is no redundancy and
there is no maximum limit with the values. In fact, if we choose the second solution, we will
have to decompose further, leading to the same state as the first solution.

First Normal Form also does not allow multi-valued attributes that are themselves composite.
Such relations are called Nested Relations, because each tuple can have a relation inside them.

of values, such that a department can be
signed to that number of attributes; For

For example, the relation EMP_PROJ is shown in Figure 4.3(e), if nesting is allowed. Each of

its tuples represents an Employee entity, and each tuple contains a relation PROJS (Pnumber, Hours)
that represents the projects that employee has worked on and the hours worked on each project. We
can express the schema of this relation EMP_PROIJ as follows :

EMP_PROJ (Empno, Ename, {PROJS (Pnumber, Hours)})

i ‘h - while Pn
This implies that the value of Pnumber in (1.

To normalize this relation in INF, we remove the nested relation put it

add its key to it. In this way, , ‘new relation is formed by adding
partial Igiymhec:uwd nlattih::.\ :i.t’l,; :I':: mmm :{- ::: mm(m(W T |
and augmentation of primary key we get two schemas EMP PROJI and EMP_PROJ2 as shown in =
figure 4.3() below : A b o g ;
EMP_PROJ1 ;
Empno | Ename
EMP_PROJ1
Emeno | Pnumber | Hours

Fig. 4.3 (f): Relation schemas after decomposition

If there are multiple levels of nesting, this process can be repeated until the original relation is
converted to a INF relation.

The first normal form disallows multi-valued attributes, composite attributes, and their
combinations.

We can understand the First Normal Form in this way :
(a) There should not be any duplicate row in the table.
(b) Each cell should have single value.

(c) The entries in the column should be same.

M 4.4.2. 2NF (Second Normal Form)

Second Normal Form (2NF) is based on the concept of full functional dependency. A functional
dependency X — Y is said to be a complete functional dependency if the dependency is nullified
when any attribute A is removed from X. A functional dependency X — Y is said to be a partial
functional dependency, if the dependency does not end even if any attribute A is removed from X,
i.e., for any attribute Ae X, (X-{A})— Y. For example, the dependency {Empno, Pnumber} — in
the relation EMP_PROJ in Figure 4.4(a) below is a complete functional dependency, since neither
Empno — Hours nor Pnumber — Hours is true. But the dependency {Empno, Pnumber} — Ename is
partial, because Empno — Ename is true.

Fig. 4.4(a) : EMP_PROJ relation schema

A relation schema is in second normal form (2NF) if each of its non-prime attributes A is fully
functionally dependent on the primary key of relation R. :

: To check 2NF we need to check functional dependencies whose left hand side attributes are part
of the primary key. If the primary key has only one attribute, then this check is not required, because
in that case the relation is automatically in 2NF. For example, the relation EMP_PROJ in Figure
4.4(a) is in INF but not in 2NF, because the non prime attribute Ename of FD2 violates the 2NF
condition. Similarly the attributes Pname and Plocation of FD3 also violate 2NF. Thus the functional
dependencies FD2 and FD3 make the attributes Ename, Pname and Plocation a partial dependency
on the primary key {Empno, Pnumber} of the relation EMP_PROJ and thus fail the 2NF test.

If a relation schema is not in 2NF, it can be normalized to a 2NF relation, in which non prime

attributes are associated only with that part of the primary key on which they are fully functionally
dependent. Thus the EMP_PROJ relation can be decomposed into three relation schemas EP1, EP2

and EP3 as shown in the following figure 4.4(b):

? EP1 EP2 EP3

1

1 Empno | Pnumber | Hours Empno | Ename Pnumber | Pname | Plocation
FD1 | [al FD2 |____T FD3 | 1 N

Fig. 4.4(b) : Normalizing the EMP_PROJ relation to 2NF

A relation schema R is in second normal form (2NF) if every non-prime attribute A of R is not

partially dependent on any key of the relation R .
Candidate ‘key’

PLOTS

Property_id
FD1
FD2
FD3

FD4 |—_T

Fig. 4.5 (a) : PLOTS relation schema

City_name | Batchno Area Price Tax_rate
A A 3 A A

| |
; To c.heck for 2NF is to <.:heck for functional dependencies whose left-hand side attributes are part |
of the primary key. If the primary key has only one attribute, then there is no need for this check. :

For .example., conside.r the PLOTS relation schema shown in Figure 4.5 (a) above, which shows
the location of different pieces of land available for sale in different cities of a state. Suppose this

This relation schema

Lo
jh Al

FLees
: s

efinition of PLOTS Second Normal Form ‘(2NF)

. violates the broad
because its attribute Tax rate ; ;

te s partially id ‘kev’ (Ci .
to the functional dependen g Y dependent on a valid ‘key’ (City name, Batchno) according

F, we decompose it into two relations

PLOTS1 PLOTS2

Property id City_name Batchno Area Price City_name | Tax_rate
FD1 t 1 FD3| l
FD2 I '
FD4 1

Fig. 4.5 (b) : Decomposition of relation PLOTS into two 2NF relations PLOTS1 and PLOTS2
Key Points :

% A table or relation is in 2nd normal form when it sati

sfies all the requirements of 1st normal
form.

% There should not be partial dependency in second normal form, partial dependency i.e.,
non-prime attribute—such attributes which are not part of the candidate key.

% All the non-prime attributes should be full functional dependent.

% In second normal form, all non-key attributes are completely functional dependent on the
primary key.

Example 1 : Let’s say, a school can store the data of teachers and the subjects they teach. In a
school, a teacher may teach more than one subject.

A relation is said to be in Second Normal Form (2NF) if it is in 2NF and the non-key attribute is
functionally dependent on the key attribute. However, if the key holds more than one a.ttribut_e, the
non-key attribute cannot be functionally dependent on part of ‘the key attnbut@. So 2NF is halting as
long as it is a composite key. We understand this in the following teacher relation.

Example 2 : Let’s say, a school can store the data of teachers and the subjects they teach. In a
school, a teacher may teach more than one subject.

i Iﬁ’thé’givén table, the non-prime attribute TEACHER AGE is w on TEAOHBK“ i
wlnch is a proper subset of a candidate key. So it violates the rule for 2NF. To convert the gwhf
table into 2NF, we decompose it into two tables :

TEACHER_DETAIL Table : TEACHER snmcr lele ’
 TEACHER ID | TEACHER_AGE 'TEACHER_ID | |
25 30 25 Chemistry
47 35 o Biology
83 38 47 English
83 Maths
83 Computer

Bl 4.4.3. 3NF (3 Normal Form)
Third Normal Form is based on the concept of Transitivie Dependancy. A functional dependency
X — Y of a relation schema R is said to be a transitive dependency if a set Z of attributes is neither a
valid key nor a subset of a key of R, but Both the X - Z and Z— Y dependencies apply.
EMP_DEPTT

Empname Emp-no Design DOB Bpay Depno | Dname | Mgr_Empno

l i i i i ‘ ‘ ‘

Fig. 4.6 (a) : EMP_DEPTT relation schema

For example, in the relation schema EMP_DEPTT shown in Figure 4.6 (a) above, the
dependency Empno + Mgr Empno is transitive, since both Empno + Mgr_Empno are applicable and
Depno is neither a key nor a subkey of EMP_DEPTT's key. - is sat. We can see that the dependency
of Mgr_ Empno on Depno is undesirable in EMP_DEPTT, because Depno is not a key in this relation
schema.

According to the original definition given by Codd, a relation schema R is in third normal form
(3NF) if it is in second normal form and none of its non-prime attributes are transitively dependent
on its primary key.

The relation schema EMP_DEPTT of Figure 4.6 (a) is in Second Normal Form, because it has
no partial dependency on 'Key'. But EMP_DEPTT is not in Third Normal Form, because its attribute
Mgr_Empno (and also Dname) is transitively dependent on Empno via Dep-no. We can normalize

e *W'*"

We can also see that any functional de BRI,
or any functional dependency in which the left side is a non-key s f
dependency. Second and third norma lmmﬁ“ QW lematic functional dependencies by
decomposing the original relation schema into new relations. While it is not necessary o remove
partial dependencies before transitive dependencies in the process of normalization, historically
Third Normal Form (3NF) has been defined by assuming that it is in Second Normal Form first and
then in Third Normal Form. , to be in normal form. : e el

A relation schema R is in Third Normal Form (3NF) if, whenever a non-normal functional

dependency X+A is applicable in the relation R, either X is the super key of the relation R or A is
the prime attribute of the relation R.

By this definition the relation is in PLOTS2 Third Normal Form (3NF). But the functional
dependency FD4 in PLOTS] is violating this, because the attribute Area is neither a super key nor a
prime attribute of the relation PLOTS] . Therefore, to normalize PLOTS! into 3NF, we decompose
it into two relation schemas PLOTS1A and PLOTSI1B, which are shown in Figure 4.7(a).

PLOTS1A PLOTS1B
Property id | City_name | Batchno Area Area Price
FD1 !) FD4 | |
FD2 4 1

Fig. 4.7 (a) : Decomposition of relation PLOTS1 into two 2NF relations PLOTS1A and PLOTS1B

To create the relation PLOTS1A, we remove the 3NF-violating attribute Price from PLOTS!1 and
put it in a new relation PLOTSIB with the attribute Area on the left side of FD4. Now both the
relation PLOTS1A and PLOTSIB are in 3NF.

It is worth noting here that the relation schema PLOTS] is not in third normal form, because its
attribute Price is transitively dependent on each valid key of this relation through attribute Area ,
which is not a prime attribute. Another important point is that we can directly check that a relation is
in 3NF, without first checking that it is in 2NF. If we first check 3NF, we find that both FD3 and
FD4 violate 3NF. So we can decompose the relation PLOTS into three relations PLOTSIA,
PLOTSI1B and PLOTS?2 at once. This means that we can remove transitive and partial dependencies
in any order. The process of normalization of relation PLOTS by the usual method is shown in the
following figure 4.7 (b).

A I(ey'Note!’ "~. & W s ok b g R S

& A table or relation is in 3rd norma
- form. :

& A relation in 3NF and any non-prime attribute must not have transitive dependencies. i ‘

n-trivial-function dependency x— >y must have at least

1 form when it saiiéﬁe'é' all the requnremems of anm

& For a relation to be in 3NF, each no
the following conditions :
X Super key and y prime attribute (Every element of y must be a part of candidate)

X->A
X—Super Key

A—Prime Attribute
Example 1—EMPLOYEE_DETAI Table

EMP_ID EMP_NAME EMP_ZP1 EMP_STATE EMP_CITY
222 Harry 201010 UP Noida
333 Stephan 02228 usS Boston
444 Lan 60007 US Chicago
555 Katharine 06389 UK Norwich
666 John 462007 MP Bhopal

Super key in above table :
1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP NAME, EMP_ZIP}.... etc.

Candidate key—{EMP_ID}

Non-prime attributes : In the given table, all attributes are non-prime except EMP_ID.

Here, EMP-STATE and EMP-CITY depend on EMP_ZIP and depend on EMP_ID. Non-prime
attributes (EMP-STATE and EMP_CITY) depend on the super key (EMP_ID). It violates the rule of
third normal form. So EMP CITY and EMP STATE have to be moved to the new
<EMPLOYEE_ZIP> table, which will have EMP_ZIP as the primary key.

~ Relational Database Design | 93

E v .
‘ MPLOYEE Table : EMPLYEE_ZIP Table :

EMP_ID | EMP_NAME | EMP_z1p EMP_ZIP | EMP_STATE | EMP_CITY

222 Harry 201010 | | |Noi

201010 UP Noida

333 Stephan 02228 02228 Us Boston
| 444 Lan 60007 6000 US Chicago

555 Katharine 06389 0638 UK Norwich

666 John 462007 462007 MP Bhopal

Third normal form (3NF) will be re
functionally dependent on only the ke
This can be understood by the followin

Here Roll Number is the ke
in Third Normal Form (3NF).
IInd year All students of 1st
non-key attribute hostel name;

3NF Example 2 :

quired where all the attributes in the relation tuple are not
y attribute, so there is unnecessary duplication of data here.
g example :

y and other attributes are functionally dependent on it, hence they are
It is known that all the students of the 1st year in the college live in
year Om hostel live Then the non-key attribute is dependent on the
As mentioned further

Student—Hostel Relation 3NF Decomposition
B 4.4.4. Boyce Code Normal Form

Roll No. Name Department Year Hostel Name

01244 Rahul Verma Botany 1 Om

01351 Mohit Gupta Zoology 2 Jai

01551 Shashank Singhal Mathematics 1 Om

22335 Manoj Bansal Physics 3 Jagdish

02422 Shankar Sharma Chemistry 2 Jai

03588 Raju Pathan Geology 4 Hari

Student—Hostal Relation (2NF)

Roll No. Name Department | Year | Hostel Name Year | Hostel Name
01244 |Rahul Verma Botany 1 |Om 1 Om
01351 |Mohit Gupta Zoology 20t [Jal 2 Jai
01551 [Shashank Singhal |Mathematics 1 |Om 3 Jagdish
22335 |Manoj Bansal Physics 3 |Jagdish 4 Hari
02422 |Shankar Sharma |Chemistry 2 |Jai
03588 |Raju Pathan Geology 4 |Hari

Boyce-Codd Normal Form (BCNF) was proposed as a simpler form of Third Normal Form
(3NF), but was found to be more strict than 3NF. In other words, any relation that is in BCNF must
also be in 3NF; But the relation which is in 3NF is also in BCNF, it is not necessary. But we need a

‘,.

Fig. 4.8 (a) : Relation PLOTS1A with a new functional dependency

The new functional dependency means that plots with a certain area are only available in
selected cities. Now since the number of areas is very limited and plots can be in thousands, if we
put this in a new relation R(Area, City name), it will have very few tuples. In contrast, the same
information will be repeated in PLOTS1A in thousands of tuples. It is clear from this that creating a
new relation will reduce the redundancy of information. It is with such conditions in mind that
Boyce-Codd Normal Form (BCNF) is defined, which is more strict and does not allow PLOTSIA,
requiring decomposition.

A relation schema R is said to be in Boyce—Codd Normal Form (BCNF) if X is a super key of
the relation R whenever there is a unique functional dependency X+A in R.

This definition is slightly different from the definition of 3NF. The only difference is that 3NF
is allowed to have a prime attribute, while BCNF is not. In the above example BCNF is being
violated by FDS5 in relation PLOTSIA, because the attribute Area is not a super key of relation
PLOTSIA. The FDS relation satisfies the 3NF condition because City _name is a prime attribute. So
we can decompose the relation PLOTSIA into two BCNF relations PLOTS1AX and PLOTS1AY, as
shown in Figure 4.8 (b) below. With this decomposition the functional dependency FD2 is lost,

because its attributes are no longer grouped together in a single relation.

PLOTS1AX PLOTS1AY
Property id Area Batchno Area City_name

FD1 | f o FD5 | j

Fig. 4.8 (b) : BCNF decomposition of relation PLOTS1A into relations PLOTS1AX and PLOTS1AY

In practical terms, most of the relational schemas that are in 3NF are also in BCNF. Only in the
exceptional case if the dependency in relation R is X+A, where X is not a super key of relation R
and A is a prime attribute, then the relation is in 3NF but not in BCNF. Ideally, every relation in &
relational database design should be in BCNF or at least 3NF. Simply getting to INF or 2NF is not
sufficient, as they were developed only as steps to reach 3NF or BCNF.

Key Notes :

This BCNF is similar to 3NF. In 3NF any one of the 2 condition of x->y is satisfied then it is in
3NF but in BCNF X->Y must have X super key.

or mh function dependency in BCNF, there must be a super key on the left hand side.

ion is in BCNF if every non-trivial functional dependency X->Y in it has an X s
RO 100 2 ;

The table is not in BCNF because
given table into BCNF, we decompose i

EMP_COUNTRY Table

EMP_ID - EMP_COUNTRY
EMP_DEPT {DEPT_TYPE, EMP_DEPT NO}
Candidate key : {EMP_ID, EMP DEPT}

neither EMP_DEPT nor EMP_ID are tables. To convert the
t into three tables :

EMP_DEPT Table EMP_DEPT_MAPPING Table

Functional dependencies :

EMP_ID |EMP_COU EMP_DEPT | DEPT-TYPE | EMP DE
NTRY PI'_I—QO
264 India Designing D394 283
264 India Testing D394 300
Stores D283 232
Developing D283 549

EMP ID (EMP_DEPT
D394 283
D394 300
D283 232
D283 549

EMP_ID —- EMP_COUNTRY
EMP_DEPT — {DEPT_TYPE, EMP_DEPT NO}
Candidate keys :

For the first table : EMP_ID

For the second table : EMP_DEPT
For the third table : {EMP_ID, EMP_DEPT}
Now, this is in BCNF because the left hand side of both the functional dependencies is the same.
B 4.4.5. Difference between 3NF and BCNF

% In 3NF no non-prime attribute is transitively dependent on the candidate key of any relation
whereas in BCNF there is never any non-trivial functional dependency in A->B relation. of

R, then A must be a superkey of R.

% 3NF can be achieved without dropping any dependencies while it is difficult to preserve
dependencies in BCNF.

.
20

1. |in 3NF there should be no tramsitive
|dependency that is no non-prime attribute|s
should be transitively dependent on the
candidate key.

2. |Itis less stronger than BCNF. It is comparatively more stronger than 3NF.

3. |In 3NF the functional dependencies are already|In BCNF the functional dependencies are
in INF and 2NF. already in NF, 2NF and 3NF.

4. |The redundancy is high in 3NF. The redundancy is comparatively low in

BCNF.

5. |In 3NF there is preservation of all functional|In BCNF there may or may not be preservation
dependencies. of all functional dependencies.

6. |Itis comparatively easier to achieve. It is difficult to achieve.

7. |Lossless decomposition can be achieved by|Lossless decomposition is hard to achieve in
3NF. BCNF.

B 4.4.6. Forth Normal Form (4NF)

So far we have discussed functional dependc.icies, which are among the most important of the
relational database design principles. In many cases, however, relations are accompanied by
constraints that cannot be expressed as functional dependencies. In this section, we will discuss
multivalued dependency and define Fourth Normal Form, which is based on this type of dependency.

4.4.6.1. Multivalued Dependency

Multivalued dependencies arise because of the condition of First Normal Form (1NF), which
does not allow multivalued attributes, that is, a single attribute cannot have the same set of values. If
the same relation schema has two or more independent attributes that are multivalued, then to bring
the relation into 1NF, we must iterate all the values of one attribute with all the values of the other
attribute.

For example, consider the relation EMP
given in the attached figure 4.9. Each tuple in this
relation states that an employee named Empname Shaloo Seth | Training Preksha
works on a project named Projname and has a Shaloo Seth R&D

Emp-name Proj-name Dname

dependent named Dname. Now because a worker 394

can work on multiple projects and can have | ShalooSeth | Training Sana |
multiple dependents. Also the employee’s project | ghaloo Seth R&D Preksha
and its dependents are independent of each other. e
So to keep the relation in consistent state we Fig. 4.9 : Relation EMP

should keep all combinations of Employee and "
Project and Employee and Dependent in separate tuples. This condition is called Multivalued
Dependency on relation EMP. |

dependency X == Yin F X is
- EMP_PROJECTS

¢ M TO¥ 5 ¢ &]
SR] TR

"~ Shaloo Seth
Shaloo Seth

Training
R&D - s

The relation EMP shown in the figure does not have any functional dependency (FD) as all the

attnb}xtes are 'key' attributes. Now because all terms in Boyce-Codd Normal Form (BCNF) are only
functlonz.il dgpendepcws, the all-‘key’ relation is automatically in BCNF. So EMP is also in BCNF
but relation is not in 4NF, because it has two Multivalued Dependencies Empnane —— Projname
and Empname —— Dname, but Empname is not the super key of this relation EMP. To bring EMP into

4NF we are decomposing it into two relations EMP_PROJECTS and EMP_DEPENDENT as shown in the
above figure. M

B(_)tl} these rc?lations EMP_PROJECTS and EMP_DEPENDENTS are in 4NF because they have
non-trivial multivalued dependencies Empnane —— Projname and Empname —— Dname

respectively. Apart from these, they do not have any other significant multivalued dependencies and they
also do not have any functional dependencies.

Key Notes :

< A relation will be in 4NF if it is in Boyce code normal form and has no multi-valued
dependencies.

% For a dependency A — B if for one value of A, there exist multiple values of B, then the
relation will be a multi-valued dependency.

Example 2—Student

STU_ID COURSE HOBBY
21 Computer Dancing
21 Maths Singing
34 Chemistry Dancing
74 Biology Cricket
59 Physics Hockey

Given STUDENT table is in 3NF, but COURSE and HOBBY are two independffm entities. So,
there is no relation between COURSE and HOBBY. In relation Student, a student with STU_ID 21
has two courses computer and maths and two hobbies dancing and singing.

o L0
il Computer ‘)
Gars dkobaso. | Mathsy: ktttigy 1 T it Dt 3
34 Chemistry : i 38 sl Dencing, ot sulss
74 Biology : Licviiion o 5 o5 YOTRKOUE | Saels
59 Physics 59 Hockey
4NF Example 3 : A relation is in Fourth Normal Form (4NF) if it is in BCNF and does not

contain multivalue dependencies. If a relation holds a multivalue dependency, it needs to be
converted to 4NF.

--— ——Facalty— |-~ NEREEIEE SRS e
Pallavi Gupta History - IBM
Pallavi Gupta Hindi IBM
Pallavi Gupta Physics IBM
Pallavi Gupta History ICG
Anuradha Jain Physics ICG
Priya Sharma History ICG
Priya Sharma Physics IBM

Faculty Relation (BCNF)

Faculty Subject Faculty Institute
Pallavi Gupta History Pallavi Gupta IBM
Pallavi Gupta Hindi Pallavi Gupta IBM
Pallavi Gupta Physics Pallavi Gupta IBM
Pallavi Gupta History Pallavi Gupta ICG
Anuradha Jain Physics Anuradha Jain ICG
Priya Sharma History Priya Sharma ICG
Priya Sharma Physics Priya Sharma IBM

Faculty Institute Relation Faculty Institute Relation
Relation in 4NF

M 4.4.7. Fifth Normal Form (5NF)

In the previous section, you learned about Multivalue dependencies and Fourth Normal Form
(4NF). Apart from these, there is also a Join dependency, which if not removed, there is a possibility
of creating an extra tuple in the join operation. After removing this dependency, the relation is in
Fifth Normal Form‘ (SNF). This dependency, however, is very rare and difficult to detect, S0
normalizing a relation to SNF is rarely practical. But it is necessary to know about it from

& Where RI mdmmme

C) and R2 (C, D).

< Alternatively, R1 and R2 are lossless deeomposmon, of]L it ,
A JD {R1, R2,..Rn} is said to hold a “]aﬁonT(TR,‘TlZ R’n is aTouieu

decomposition.

* *(A,B, C, D), (C, D) will be a JD of R if the join attribute of join is equal to the relation of

R.

bl w;’f erm.eb !5 it mg

£t

{

b

deeomposmon ofa gwen mlanon K’(x ﬁ. C ﬂ) mp fi (ﬁ, f’

o

,,.__; 50 5y

% Here, *(R1, R2, R3) is used to indicate that relation. R is JD of R, R2, R3 and so on.

Example 1

SUPPLY
S-name Part-name Proj-name
Amar Bolt Proj-A
Amar Nut Proj-B
Akbar Bolt Proj-B
Anthony Nut Proj-C
Akbar Nail Proj-A
Akbar Bolt Proj-A
Amar Bolt Proj-B

a super key of every R, relation schema R.

R,
Sname Partname
Amar Bolt
Amar Nut
Akbar Bolt
Anthony |, Nut
Akbar Nail

Fig. 4.10 : Relation SUPPLY

A relation schema R is said to be in Fifth Normal Form with respect to any set of functional,
multivalued and joined dependencies if every non-trivial join dependency JD (R;,R,,...R,) in F'is

R2
Sname | Projname
Amar Proj-A
Amar Proj-B
Akbar Proj-B
Anthony Proj-C
Akbar Proj-A

R;

Partname | Projname
Bolt Proj-A
Nut Proj-B
Bolt Proj-B
Nut Proj-C
Nail Proj-A

Fig. 4.11 : Decomposition of relation SUPPLY into 5NF relations R, R, and R

6 g

Jonx

~ condition can also be stated in another w.
which is applicable in the three projections R, (Sname,
(Partname, Projname) of the relation SUPPLY. If this condition holds, the: upies,

line in Figure 4.10 must be in all valid ;elation states that include the tuples above this line.

Figure 4.11 shows how the relation SUPPLY with a join dependency can be decomposed into
three relations R, , R, and R;, each of which is in SNF. Note that natural join operation on any two
of these relations produces spurious tuples, but when natural join operation is done on all three
relations together, no spurious tuple is produced. You can check it. This is because it only has a join
dependency, but no multivalued dependency. It is also important to note that the join dependency JD

(R, R,,R;) applies to all valid states, not just the state shown in Figure 4.11 above.

Finding join dependencies is nearly impossible in practical databases with hundreds of attributes
at once. This can only be done by close inspection of the data, which is the job of the database
g designer. So now-a-days it is given very little attention during database design. In other words, Fifth

: Normal Form is kind of impractical.

: Key Points :
& A relation is in SNF if it is in 4NF and does not have any join dependency and the joining

must be lossless.
& SNF is satisfied when all tables are broken into as many tables as possible to avoid

dependencies.
& S5NF is also known as project-join normal form (PJ/NF).

Example 2
SUBJECT LECTURER SEMESTER
Computer Anshika Semester 1
Computer John Semester 1
Maths John Semester 1
Maths Akash Semester 2
Chemistry Praveen Semester 1
Fig. 4.12

In the above table, John takes both computer and maths class for semester 1 but he does not take
maths class for semester 2. In this case, a combination of all these fields is required to identify a
valid data. :

Suppose we add a new semester as semester 3, but don't know about the subject, who will take

thz_xt subject, so we leave lecturer and subject as NULL. But all the three columns together act as a
primary key, so we cannot leave the other two columns blank.

So to make the above table in SNF, we can decompose it into three relations P1, P2 and P3 :

S wieGely S vt

g LU 3
108 WA A (DU 2 £

Computcr T 'I.J M”" 510 MRS ,‘uis;;w:{‘t NN St 9
Computer ol :
Maths John
| Maths Akash e P
Chemistry Praveen
P3
SEMESTER SUBJECT
Semester 1 Anshika
Semester 1 John
Semester 1 John
Semester 2 Akash
Semester 1 Praveen
Fig. 4.13
Normal Form Description
INF A relation is in SNF if it has an atomic value.
2NF A relation will be in 2NF if it is in INF and all non-key attributes are fully
functional dependent on the primary key.
3NF A relation is in 3NF if it is in 2NF and no transition dependencies exist.
4NF A relation is in 4NF if it is in Boyce codd normal form and has no multi-valued
dependencies. ;
SNF A relation is in SNF if it is in 4NF and has no join dependencies and the joining
must be lossless.

4.4.7.2. Functional Dependency
Dependency in DBMS is a relationship between two or more attributes. It is as follows in DBMS-

If information stored in a table can uniquely determine information in the same table, it is called
a functional dependency. Think of it as a relationship between two attributes of the same

relationship.

r ‘ . 1 5
Rohit S aoei)

D02
In the above table, EmpName is functionally dependent on EmpID because EmpName can take
only one value for a given value of Empid :
EmplD->EmpName
The same is displayed below : i
EmpID->EmpName
yee ID (EmpID)

ame) is functionally dependent on Emplo

Employee Name (EmpN
functional dependency :

There are following types of
4 Fully-Functional Dependency
Transitive Dependency

Multivalued Dependency

&

2
0.0

& Partial Dependency

4.4.7.3. Fully-functionally Dependency

pendent on another feature if it is functionally dependent on that

A feature is completely de

feature and not on any proper subset of it.
For example, an attribute Q is fully functionally dependent on another attribute P, if it is

functionally dependent on P and is not a proper subset of P. Let us see an example-

<ProjectCost>
ProjectID ProjectCost
001 1000
002 5000
<EmployeeProject>
EmpID | ProjectID Days (spent on the project)
E099 001 320
E056 002 190

:_ above {elgﬁon shows : EmpID, Project ID, ProjectCost->Days
it is not entirely functional dependent.

IfP > Q and Q->R s true thenP->Rnsa Saakiie i
- e, - transitive dependency.
4.4.7.5. Muitivalued Dependency s .

Multi-valued dependencies arise &
¢ wh S / 3
other rows in the same table. If 7 €n one or more rows in one table exist from one or more

Ry a table, P, : ? :
facts of P. This is indicated by the e, P, Q and R are attributes, then Q and R are multi-valued

double arrow : ->->
For our example : P->->Q

Q->->R
tm‘[l:n ;ile above case, the multilevel dependency exists only when Q and R are independent
a :

4.4.7.6. Multivalued Dependencies

Multivalued dependency occurs when two attributes in a table are independent of each other but,
both depend on a third attribute.

A Mult?valued dependency has at least two attributes that depend on a third attribute, so it
always requires at least three attributes.

Example : Suppose there is a bike manufacturing company that produces two colors (white and
black) of each model every year.

BIKE_MODEL MANUF_YEAR COLOR
M2011 2008 White
M2011 2008 Black
M3011 - 2013 White
M3011 2013 Black
M4006 2017 White
M4006 2017 Black

Here the columns COLOR and MANUF YEAR are dependent on BIKE MODEL and are
independent of each other.

In this case, both these columns can be said to be multivalued dependent on BIKE_MODEL.
The representation of these dependencies is shown below :

BIKE MODEL —-— MANUF_YEAR
BIKE_MODEL —— COLOUR

T ’u‘ﬁ i ,g,.v’ *w‘v;rr ﬂ

Second normal form (ZNF) eliminates mlfmcm. 1

sn,....mtl’"jm Lo saastaal Jeanergd . b ey xL - T IO {\!I
S01 Katie Geo Locat:dn '
S02 120 . Ollie Cluster Exploration ;

‘In the above table, we have partial dependency; Let us see how the prime attributes are Student
and ProjectName. As stated, the non-key attributes i.e. StudentName and ProjectName must be part

of a candidate key, for partial dependency.
StudentName can be determined by StudentID which makes the relationship partially dependent.

ProjectName can be determined by ProjectID, which is a partial dependency relationship.
For example : Let there be a relation R (Course, Sid, Sname, fid, schedule, room, marks)

Partial Functional Dependencies : Course->Schedule, Course-> Room

g X 2 T T
o L P oa Lt LIS AR £

1. Explain Functional dependency with an example.
2. What do you understand by closure of a set of Functional Dependencies? Explain in detail.
3. What is meant by Normal forms? Name their types.
4. What do you understand by Normalization? Why is it needed?
5. What is Anomalies? How many types of anomalies can exist in a database system? Describe.
6. Write short notes on the following :
(1) Armstrong Axioms, (viii) Full Functional Dependency,
(i1) First Normal Form—1NF (ix) Partial Dependency,
(i11) Second Normal Form—2NF, (x) Transitive Dependency,
(iv) Third Normal Form—3NF, (xi) Dependency Preservation.
(v) Boyce Codd Normal Form—BCNF, (xii) Multivalued Dependency.
(vi) Fourth Normal Form—4NF, (xiii) Join Dependency.

(vii) Fifth Normal Form—S5NF,
7. Write the difference between 3NF and BCNF.

|

nguage for preparing queries in the database management
p called Query Language. Most relational database management systems use a
specialized qu?ry language called Structured Query Language. It is abbreviated as SQL and
pronounced as ‘sequel’. In this chapter, you will learn about query preparation in detail.

SQL was developed by IBM in the 1970s as a part of R, a relational database management
system developed by E.F. Codd in 1976, In 1979, Oracle Corporation released the first commercial
version of SQL. The International Standards Institute (ANSI) approved SQL in 1986 as a standard
query language for relational databases. The International Standards Organization (ISO) has also
introduced SQL as a standard language for relational databases. One reason for the success of

commercial relational databases is SQL, as it has become the standard language for all types of
relational database management systems.

There is also a certain system or |a
em, which is

SQL is a set-oriented language. It produces a result table based on a query from one or more
data tables. SQL manages one or more tables in the context of a database. It supports relationships

between data tables directly through Schema. It stores tables and relationships between them in a
Data Dictionary.

Using SQL gives us the following benefits :
1. It works efficiently.
2. Itis simple to learn and use.

3. Itis sufficient for all operations performed on a database. This means that we do not need any
other programming language to make the desired use of the database.

This language is explained in more detail in the following sections.

B 5.1.1. Advantages of SQL

SQL holds various commands used for data processing activities. We use the SQL command to
accomplish the following objectives :

(a) To create, delete and modify the table structure.
(b) To define the relationship between two or more tables.

80 R e W)
is a simple language whose instructions are easy to remember. ,
2. InSQL the output of one instruction can be used as input to another instruction, which makes jt
a more powerful language.
3. In SQL, we can combine multiple rows into a single statement.

4. It is a non-procedural language, that is, ready-made commands are available for all tasks, for
which we do not have to write code.

5.2.SOL NAMING CONVENTIONS AND GUIDELINES

SQL is used to create and manipulate all database objects. These database objects can be Tables,
Columns, Keys, Views, Clusters, Sequences, Triggers etc.

SQL is the main means of communicating with the database. It is the first and only means for
this work. We can type the command given in SQL in either upper case or lower case. The difference
of case does not affect the command, the result of the command is the same. This is technically
called case insensitive of this language. But if the comparison is being made with the protected data
in the table, then in this case this language is case sensitive. An SQL statement begins with an SQL
command.

It is necessary to name the object to be created in SQL. There are some pre-defined rules in SQL
for naming objects, which are required to be followed. Along with the name of the object, it is
necessary to follow these rules equally for the name of the database created by the user. These
pre-defined rules are as follows :

(i) The name of the object should be between 1 to 8 bytes, that is, it should be of maximum 8 bytes.
The name of the database can be up to a maximum of 8 bytes.

(ii) The name is not case sensitive, so there is no difference whether the letters in the name are

upper case or lower case.

(iii) The name should start with a character only. All letters of the English language as well as
numbers can be used in the name. In addition some special characters; Like- ‘-’ ‘$’ and ‘#’ can
also be used in the name.

(iv) For database, the name cannot be a reserved word or command.

(v) Name should not be between Quotation Mark (‘“** or ¢*).
A name can be placed between Double Quotation Marks only in the following circumstances :
« If the name contains empty words.

% If the name has to be made case sensitive.

< If the name has to start with a number or special letter instead of a letter.

mysaL/saL | 107

SQL PARSING AND Exg,
When an application e i
loaded onto the server. Thig

% By checking the §
checked.

% The SQL statement ;
e Nt 1s also checked from the point of view whether this statement has the
g cecute the process given by it or not.
% To check the tables ap

d columns, it follg icti ich i i
in which various info) ws the data dictionary, which is a central repository

: rmation related to the data is located.
< It is used to lock ob

tat t.5 Jects whose definition is immutable at the time of execution of the
statemen > rom SQL Statements sent by other users.
% It determines the best

: execution plan for the execution of the sent statement.
Parsing occurs only if an identical

statement is already located in the me

EEseeinahe et el e SISl R

{ iy T]

xeCUte S LD A Rl BTN / ...; Al S e WA e ’
o5 $ an SQL statement, a report of the parsing of the statement is

Parsing performs the following tasks :

Q Statement according to proper syntax, its semantic precision is also

SQL statement does not already exist in memory. If any other
: ‘ mory, then the database first passes the same statement, which
is already located in the memory, without parsing that new statement. If there is no other statement
in memory, the database will parse the new statement.

Parsing of any statement happens onl
executed any number of times. If a query
already b

y once. Once parsing is done, the statement can be
_ comes to the database to execute a statement that has
een parsed, it does not do parsing again and executes it as per the parsing done earlier. Due

to this feature, the load on the memory of the database server is reduced and it increases the
performance of the database server.

The execution of an SQL statement consists of the following stages :
% Forecasting of SQL statement automatically creates a Cursor Buffer.
< Parsing of the database SQL statement.

% The database determines the characteristics of the resulting data.

% Output domains are defined by the database. These domains include the location, size, and
data type of the variables that are defined to receive the returned value.

% Finally the database executes the SQL statement.

According to the demand made in the statement, the rows of data are selected and they are
sorted.

9.4. SOL DATA TYPES

In relational database systems (RDBMS), data is generally represented in the form of tables.
Generally the table is represented by the following structure :

Column 1 Column 2 | ceeessesscssoscess Column n

« Tuple (Record)

e3P

108 | Database Management System

A table is mainly identified by its unique name and it consi§ts of variqus rows and columpg
Rows represent a collection of interrelated data values that pertain to a particular person or thing.
And each table, row represents a tuple or record. Column is made up of column name and data type,
where each column name represents an attribute of tuples. The data type of the at.tnbute tells the type
of information that is to be stored in the table at the time of table creation. Tepmnology of relationg
model in SQL; For example, the words table, row, column are used for relation, tuple and attribyg,

respectively. -
A table can represent up to 254 columns, which may have the same or different data types. The

main data types in SQL are of the following types :

Data Type Use

CHAR (Size) We can declare the value of any data in char (n) type. Such a column can store a string
of n symbols. The maximum value of » can be 240. We can also write it as character

(n).
VARCHAR This data type is used to store alphanumeric data. It is the flexible form of _CHAR data
(Size)/ type. A maximum of 4,000 vectors can be kept in this data type. Hencg it is u§ed to
VARCHAR?2 store Variable Length String. That is, the length of the string keeps on increasing or
(Size) decreasing.
DATE The value of a data can also be declared in date type. Any valid date from 1 February

4712 BC to 31 December 4712 AD can be stored in such a field in the format
DD-MM-YYYY; Like-27.10.2021".
NUMBER(n, d) |We can declare the value of any data as a number, which includes integer and real.

Here n is the maximum number of digits and d is the number of digits after the decimal
point. A number can have a maximum of 38 digits, in which the decimal point and the

sign can be separated.

LONG Data up to 65535 characters can be stored in this data field. But only one column or
field in a table can be long.

RAW/LONG The value of this type of data can be stored in bytes; Like a picture. Such field can

RAW contain data of maximum 2000 bytes. But on many systems this limit may be higher.
Long Raw is similar to the raw type, but has a maximum limit of 2 gigabytes. On many
systems this limit may be higher.

5.5. AGGREGATE FUNCTION

There are many functions available in SQL that can be used to select or perform calculations on
Numeric, Character and Date type fields of a relation. But these functions can only be applied to a
set of rows. Such groups are made according to the common value of a column in a table. These
functions return only one value for a group and hence they are called Summary functions or
Aggregate functions.

Aggregate functions by SQL are given below :

Function Type Usage
SUM() Numeric Sum of a group
AVG() Numeric Average of a group

MIN() MysaL/saL | 109
Numerj e
MAX() Numerfc’ Descriptive, Date Minimum value in a group
O S merfc, Descriptive, Date Maximum value in a group
STDDEV() Numenc, Descriptive, Date Number of values in a group
umeric
Standard deviation of a group
VARIANCE() Numeric i e

5.6. SOL COMMANDS

SQL commands are th
¢ keywords that make up statements. Clauses are also added to these as

per the requirement. The ¢q 12 3
7 P g mmands or statements of SQL are divided into four sub-languages, which

1. Data Definiti
B L o the relatilolm: ;Ja“g“age or DDL Commands : Its statements are used to define various
d nal database. These statements are mainly three : CREATE, ALTER and DROP.

2. Dat i i
ata Manipulation Language or DML Commands : Its statements are used to add, delete,

modify and query data in relational databases. Th :
‘ tat .
aiid DELETE. ese statements are mainly four : INSERT, UPDATE

3. Data Query Language Commands or DQL Commands : Its statements are used to extract
data from one or more tables of a relational database. Like : SELECT.

4. Qata Control Language or DCL Commands : Its statements are used to control the data in
the relational database. These statements are mainly two : GRANT and REVOKE.

We will study these three categories of statements in detail in the following sections.

M 5.6.1. Data Definition Language Commands

5.6.1.1. CREATE Command

A new table or relation can be created in a database by this command. For this we have to give
the name of that table, its attributes and initial constraints. The format of this order is as follows :

CREATE TABLE <relation name>
(<attributename><datatgpe>[constraint]
[<attributename><datatype>[constraint]]

)i
Where, CREATE TABLE isa reserved word,
is the name of the table to be created,
is the name of a field or column in that relation,
is the type of data to be stored in that column, and

bute. Giving them is optional.
g to the grammar of SQL. You have read

<relation name>

<attribute name>

<date type> L

constraint are the constraints that apply to that attr

The data type of an attribute must be valid accordin
about them in the previous section.

e

110 | Database Management System

We can mainly use the following constraints on an attribute :

NULL or NOTNULL Indicates that NULL can be used in that field.

UNIQUE Means that the value of that field should be unique.
PRIMARY KEY It declares the primary key of that field.
Example : Suppose you want to create a table Student, which should have Name, Roll_no,

Bdate and Grade fields. For this statement or order will be given as follows :

CREATE TABLE Student
(Namechar(20),
Roll_nonumber (4) PRIMARYKEY,
Bdatedate NOTNULL,
Gradechar(1)

);

5.6.1.2. ALTER Command
This command is used to change the structure of a table in a database. The format of this
command to add new attributes to the table is as follows :

ALTER TABLE <relation name> ADD
(<attribute name> <data type>[constraint]
[<attribute name> <data type[constraint]]

)

Where, ALTER TABLE is a reserved word,

<relation name> is the name of the table to be modified,

ADD is the safe word,

<attribute name> is the name of the new field or column in the relation,
<date type> is the type of data to be stored in that column, and
constraint are the constraints that apply to that attribute.

For example, if you want to add a new column Total marks in the table student, then the
statement or command will be given as follows :

ALTER TABLE Student ADD (Total_marks number(3));

The format of ALTER command to modify an attribute in a table is as follows :
ALTER TABLE <relation name> MODIFY
(<attribute name> <new data type> [new constraint]
[, <attribute name> <new data type> [new constraint]]

) mysav/saL | 111
Where, ALTER TABLE

. 1S a reserved word
<relation name> ’

MODiFy 18 the name of the table to be modified,

: is the safe word,
<attribute name>

is the name of the field or column of the relation to be modified,
<new data type>

new constraj 15 the new data type for that colw and
nstrai :
. o are the new Constraints that apply to that attribute.
For example, if you want

digits to 4 digits, then the stater:;?zrre:z:ntr:l:cliz:/i(;lft(:: zwnzzt?éﬁ?ikf R
ALTER TABLE Student MODIFY (Total_marks number(4)):
mmand to delete an attribute in a table is as follows :
ALTER TABLE <relation name> DROP COLUMN
(<attribute names [.<attribute name>]...)
Where, ALTER TABLE is a reserved word

<relation name> is the name of the table to be modified,
DROP COLUMN s the reserved word, and

<attribute name>

is the name of the field or column to be removed from the relation.

For example, if you want to delete the column T otal_marks from the table Student, then the
statement or command will be given as follows :

ALTER TABLE Student DROP COLUMN (Total_marks):

Thus using different forms of ALTER command you can modify or change the structure of any
table as per your requirement.

5.6.1.3. DROP Command
This command is used to delete a table from the database. The format of this order is as follows :
DROP TABLE <relation name>;
where, DROP TABLE is a reserved word, and
<relation name> is the name of the table to be dropped.
For example, if you want to delete the table Student from the database, then the statement or
command will be given as follows :
DROP TABLE Student;
The thing to keep in mind here is that only the owner of the table can deletg that table from the
database. If a table is removed from the database, it ceases to exist, meaning that no data or
references to it remain in it. When deleting a table, it should not contain any rows.

5.6.1.4. DESCRIBE Command s '
This command is used to view the details of a table i.e., its structure. The format of this order is

as foll :
5. DESCRIBE <relation name>;

where, DESCRIBE is a reserved word, and

V& 31‘ i lN‘

'ffm1MT commnnd
" This command is used to insert a row or tuple into a relatlon The format of this order is as
follows :

INSERT INTO <relation name>
VALUES (<attribute valuel>, <attribute value2,...);
where, INSERT INTO is the protected word,
<relation name> is the name of the relation to which the new row is to be added,
VALUES is a reserved word, and
<attribute value> are the values of various attributes of that relation.

Here it is important to keep in mind that the values of different attributes must exactly match the
order and type of all the attributes of that relation, otherwise the row will be wrong or the operation
will be cancelled.

For example, a row can be added to relation Employees as follows :
INSERT INTO Employees
VALUES (9656, ‘Ram Bharose’, ‘Clerk’, 18-9-2004, 7200);

If you want, you can also keep the value of an attribute NULL. For example, if you want to keep
the value of Date_of join field blank, then the command will be as follows :

INSERT INTO Employees
VALUES (9656, ‘Ram Bharose’, ‘Clerk’, Null, 7200);

5.6.2.2. UPDATE Command

This command is used to change the value of certain columns of certain rows of a relation. Its
format is as follows :

UPDATE <relation name>
SET <attribute name> = <new value>,....

WHERE <condition>;
where, UPDATE s the reserved word,
<relation name> is the name of the relation to which the new row is to be added,

SET is a reserved word,
.<attribute name> is the name of an attribute of the relation to hold the new value,
<new value> is the new value of that attribute, and

WHERE is the reserved word,

“.“ e 4 tveta Sl Fasities ,
WHERE Emp_no = 5684.
the t?:sﬂé::fszi:ynﬁfmﬁi’ that WHERE clause must be given in this command, so that only
1t -4 e @ , ;
will Do reformatied. On are to be reformatted. [f you do not provide this clause, all rows

5.6.2.3. Difference between Delete and TRUNCATE
Both the Delete and Truncate comm i
DML command while Try - ands can be used to remove data from a table. Delete is a

tﬂ:”’f" 'l“,te‘_m = 12000

: ntegrity of the table. On the other hand, delete statement can be used
to remove specific data. With

; the delete command, we cannot bypass the integrity enforcement
mechanism.
S. No. Key Delete Truncate
1. |Basic

Itis used to delete specific data. It is used to delete the entire data of the

table.

2. Where clause |We can use with where clause. It can’t be used with where clause.

Locking It locks the tables row before It locks the entire table.
deleting the row.
4. |Roliback We can rollback the changes. We can’t rollback the changes.

Performance It is slower than truncate. It is faster than delete.

5.6.2.4. Difference between Delete and Drop

Delete is a Data Manipulation Language (DML) command and is used to remove tuples/records from
a relation/table. Whereas Drop is a Definition Language (DDL) command and is used to remove named
elements of a schema such as relations/tables, constraints or the entire schema.
Key Differences Between Delete and Drop
S. No. Key Delete

Drop

1. |Purpose Delete Command removes some or all| Drop command removes named
tuples/records from a relation/table. |elements of schema like relations/table,
constraints of entire schema.

2. |Language |Delete is DML Drop is DDL.
3. |Clause Where clause is used to add filtering. |No where clause is available.
4 Rollback Delete command can be rollbacked as|Drop command can’t be rollbacked as

it works on data buffer. it works directly on data.

Interaction

~ |Orientation

Objective

b S IR (32)

SQL directly interacts with database
server. ;
SQL is data oriented language. ? :

SQL is used to write queries, create and
execute DDL and DML statements.

Deleﬁecommlnd may face s‘l;m of]|

Sty s oy e e bty

ﬁ' i, ‘»_) i O S o | ;
PL/SQL does not directly interacts
with database server.
PL/SQL is application oriented
language. '

PL/SQL is used to write program
blocks, functions, procedures, triggers

’ 5

i

SR 5 MSU

and packages.

5.6.2.6. Difference between MySQL

and SQL Server

MySQL and SQL Server are both relational database management systems or RDBMS. MySQL
is open source and free to use; Whereas SQL Server is a licensed product of Microsoft.

Following are the important differences between MySQL and SQL Server :

S. No. Key MySQL SQL Server
13 Owned/ MySQL is owned by Oracle. SQL Server is developed by
Developed By Microsoft.
2 Language MySQL supports programming|SQL Server supports programming
support languages like C++, Java and has|languages like C++, Java, Ruby,
running support for Perl, TCL and|Visual Basic, Delphi, R.
Haskel.
3. Storage space |My SQL needs less amount of|SQL Server needs large amount of
operational storage space. operational storage space.
4. Query MySQL does not support midway|SQL Server allows canceling query
cancellation query execution cancellation. execution midways.
o} Back up MySQL blocks the database while|SQL Server does not block the
taking the backup. database during backup process.
6. Cost MySQL is free to use. SQL Server is costly.
7 Data file|Data file can be manipulated while|Data file manipulation is not allowed
manipulation [running. under security consideration while
running.
8. A\"a'ilable MySQL Standard Edition, MySQL |Enterprise, Standard, Web,
editions Enterprise Edition, and MySQL|Workgroup, or Express.
Cluster Grade Edition.

You will learn about clauses in the later sections of this chapter.

5.6.2.6. DELETE Commang
This command is used t Temove certaj

N rows or tuples from a relation. Its format is as follows :

DELETE <relation Name>

WHERE “conditions,

where, DELETE 1S a reserved word
<relatio i ’ '
relation name> fS the name of the relation from which the row will be deleted, and
WHERE 1S the reserved word,
<condition>

. 1S a condition that the rows that meet will be removed.
For example, if you wapt o delete th

Employees, then the DELETE command wil]
DELETE Employees
WHERE 'Emp_no=8995;

€ row containing Emp_no 8995 in the above relation
be given as follows :

As a result of this statement, a| rows that satisfy the condition of the WHERE clause will be
removed from the relation.

5.6.2.7. TRUNCATE Command

Both DELETE and TRUNCATE commands d
cases there is a difference between the two. T
following points :

0‘0

% Truncate command does not support WHERE clause.

L)
o

elete all rows or records from a table; But in some
RUNCATE TABLE is different from DELETE in the

Truncate command deletes all rows or records from the table; But does not delete the
structure, columns or fields, constraints etc. of that table.

The Truncate operation drops and recreates the table, which is
rows one by one.

much faster than deleting
< Truncate operation is not Transaction-safe.

< It is impossible to return the rows deleted by Truncate command.

The format of TRUNCATE TABLE is as follows :

Draft :
TRUNCATE TABLE <Table Name>;
Example :
TRUNCATE TABLE EMP;
This command will delete all the rows of EMP TABLE forever.

B 5.6.3. Data Control Language Commands

DCL provides us the necessary commands for the security of the data, through which we ensure
that no unauthorized person can access the data. DCL (Data Control Language) .allows us to ensure
the user's Read, Write, Update etc. rights to prote'ct the data from any kind of damage by
Unauthorized person, by which we can determine which user What may work and what may nf)t?
Through these facilities, we can control the access of data by more than one user. The following
fommands mainly come under DCL :

| e |

116 | Database Management System

GRANT Through this command, we set the access permissions of each table for different users.
These permissions determine whether a user can read, write, or even update a table.

REVOKE This command works to remove the authority given to the user on a table through the
Grant command.

COMMIT This command is used to permanently save the database changes for the current session.

SAVEPOINT |This command is used to set a save point on the database so that in case of database
failure or wrong transaction, we can rollback the database to this save point.

ROLLBACK | This command is used to rollback the database up to the save point and if the save point
has not been set then it brings back the database to the initial state.

5.6.3.1. GRANT Command
Draft : (Syntax)

GRANT <object privilege> [ALL]
ON <objectname>

TO <username>

{WITH GRANT OPTION}

Here in <object privilege> those operations are given which we want to allow to the user: eg-
ALTER, DELETE, INSERT, SELECT, UPDATE etc.

In <object name> the name of the table is given on which we want to grant permissions to the

user.
Example :

GRANT ALL

ON Employee

TO USRI

WITH GRANT OPTION
REVOKE

5.6.3.2. REVOKE Commands
Draft : (Syntax)

Example :

REVOKE <object privilege> [ALL]
ON <objectname>
FROM <username>

REVOKE ALTER, UPDATE
ON Employee
FROM USRI

5.6.3.3. COMMIT Command

This command is used to save the changes made in the data table.

~ mysausaL | 117

Example :

In this example the changes made by UPDATE o
and Rs 300 will be added to 4] salaries in the tabje

5.6.3.4. ROLLBACK Commang

This command is j ’
i Just the opposite of COMMIT, that is, it undoes the changes made to the table.

peration will be saved by COMMIT command

UPDATE Employee st S
WHERE desig

ROLLBACK

alary = Salary + 300
= Manager

saved in the table.
5.6.3.5. SAVEPOINT Command
This command sets the SAVEPOIN

ROLLBACK command, we can rollbac
Example :

T in the transaction being committed, and at the end with the
k the transaction up to the SAVEPOINT only.

INSERT INTO Employee VALUES (1, “Sachin”, 50000, “MANAGER",
“SALES”)

INSERT INTO Employee VALUES (2, ' %ReRtL>2 --:52000" “MANAGER”
“PRODUCTION")
SAVEPOINT SPI

UPDATE Employee SET Salary = 300 WHERE desig = “MANAGER”
ROLLBACK To SAVEPOINT SPI

The operation will be cancelled, but the Insert operation performed above the savepoint will not
be cancelled.
W 5.6.4. Data Query Language Commands
5.6.4.1. SELECT Statement

SELECT is a basic statement in SQL, which is used to retrieve data from a database. It has

nothing to do with the SELECT command of relational algebra. The general format of this statement
is as follows -

SELECT [DISTINCT] <attribute name> [<attribute name>]...
FROM <relation list>
[WHERE <condition>]
Where, SELECT is the reserved word,
DISTINCT is an optional keyword,
<attribute name> is the name of a field or column from which to select data.

“keyword inpelbl. mm
relation Employees is given like the following table. w’
m based on this relation. ;

! mf e BV %s& i 0 of_join l‘“ ‘&
4653 Radhey Shyam Manager 12/04/1995 | 15000
6572 Gauri Shanker Asst. Mgr 28/06/1998 12500
5684 Laxmi Narayan Officer 08/07/1997 10500
6054 Chandra Prakash Officer 12/03/1999 9500
%593 Laxman Das Head Clerk 27/09/2002 8000
8995 Pritam Singh Clerk 15/05/2003 7400
9754 Baboo Lal Clerk 23/01/2005 6500
6547 Peon 24/04/1998 5000

To display the values of Design of all the records the SELECT command will be given as

follows :

It lists the Desgn values of all the records. including some duplicates. If we want each
designation 1o occur only once in the result, we need to add the DISTINCT keyword to our
statement. Therefore, this order will be given as follows :

g SELECT DISTINCT Desgn FROM Employees:

!
|

|

|
|

|
|
|

SELECT Design FROM Employees;:
The output of will be as follows :

Desgn
Asstt. Mgr
Officer
Officer
Head Clerk
Clerk
Clerk

Peon

These are the parts of SQL statl i

ement
WHERE, ORDER BY, GROUP BY, H;R’SINth
using the proper clause in state

: ment. Certaj
use and effect will be explaineq ind i

M 5.7.1. Use of WHERE clayse

at make the statement more explicit; Like-FROM,
G etc. In fact the desired result is achieved only by

(clauses can be used with each type of statement. Their
etail along with statements.

milrlgrzﬁzz V;’g()\ggntl: the lrllrdme and designation of only those employees whose Basic Pay is equal to
or ! V- I'or this we have to yse WHERE clause and appropriate condition will be added
to it. Therefore, this statement wil] pe given as follows -

SELECT Name, Desgn, FROM, Employees
WHERE Basic_pay >=10000;

The output of this statement will be as follows :

Name Desgn
Radhey Shyam Manager
Sita Ram Asstt Mgr
Gauri Shankar Officer

Similarly if we want to list the name, employee number and designation of the employees in the
range from employee number 6001 to 9000, then the statement will be given as follows :

SELECT Emp_no, Name, Desgn FROM Employees
WHERE Emp_no BETWEEN 6001 and 9000;

The output of this statement will be as follows :

Emp_no Name Desgn
6572 Sita Ram Asstt Mgr
6954 Laxmi Narayan Officer
8593 Chandra Prakash Head Clerk
8995 Laxman Das Clerk
{ 6547 Baboo Lal Peon‘

; , like :

T ~ SELECT Emp_no, Name, Desgn FROM Employees
~ WHERE Name LIKE 'Lax%’;

~ The output of this statement will be as follows :

L

Emp_no Name Dyp
6954 Laxmi Narayan Officer
8995 Laxman Das Clerk

Here '%' is a wild symbol, which matches zero or more characters.

We use the IS operator to check if an attribute or field can contain a NULL value. For example,
to list the names of employees who have not yet been allotted a department i.e. whose department
number field is filled with NULL value, the query would be given as follows :

SELECT Emp_no, Name, Desgn FROM Employees
WHERE Depno IS NULL;
Note that we cannot check for NULL value by ‘=" operator, but only by IS operator. Similarly the
non-NULL value will be checked by ‘IS NOT NULL’ condition.

B 5.7.2. Use of ORDER BY clause

There is no order in which the results are returned in response to a query. You can use the
ORDER BY clause to get the results in a particular order if you want. The general format of the
SELECT statement with this clause is as follows :

SELECT [DISTINCT] <attribute name> [<attribute name>]...
FROM <relation list>

[WHERE <condition>]

ORDER BY <attribute name> [ASC] [DESC]....;

b Here the keywqrd ASC is used for ascending order and DESC is used for descending order with
~ the name of the z.lttnbute. ASC is assumed to be the default order. For example, if you want the result
‘q‘ﬁaimlery to be in alphabetical order of the Name attribute, the statement would be as follows :

SELECT Emp_no, Name, Desgn FROM Employees
WHERE Emp_no BETWEEN 6001 and 9000

SR iﬁr}\r,;p f:i_i{q we g
PGy siﬁ(m ,w : :' CAHME L Udj"mﬁ; ‘*e ‘

—

SHEN fuer] Al en ,-1/:)
es.ofmorethanoneatu-ibm (Bite g

ORDER BY Basic_pag DESC, Date of_join ASC:

The output of this statement will be as follows :
\ o $
Emp_no Name o Deag 7E PG TV R S
6572 Sita Ram Asstt Mgr 28/06/1998
6954 Laxmi Narayan Officer 12/03/1999
8593 Chandra Prakash Head Clerk 27/09/2002
8995 Laxman Das Clerk 15/05/2003
6547 Baboo Lal Peon 24/04/1998

Note that although the basic _pay attribute is not in.

cluded in the result of the query, its effect on
sorting of the resulting records is obvious.

B 5.7.3. Use of aggregate function

Aggregate functions can also be used to display in the results of a query. For example, if you
want the average of Basic _pay of the employees, then you can get it by giving following statement :
SELECT AVG (Basic_pay)

FROM Employees;

The result of this query will be given as follows :
Basic_pay
9300

Similarly, you can also extract SUM, MIN, MAX etc. of an attribute. If you want to count the
records, then you can use the COUNT function as follows :

SELECT COUNT(*)
FROM Employees

Mh&vﬁdumm“b“
| with ag ons, although it is not mandatory.
wm&ummmucm-.m

SELECT <attribute name>[, <attribute name>][, functions]..

FROM <relation name>
GROUP BY <column name>];

where, <function> is aggregate functions, and
<column name> is the name of the column whose values

will be used to group.
For example, if you want to get the number of employees according to their designation, then

the statement will be as follows :
SELECT Desgn, COUNT(*) FROM Employees

GROUND BY Desgn;
The result of this statement will be as follows :

Desgn

Manager
Asstt. Mgr
Officer
Head Clerk
Clerk

Peon

Count(*)

_— N = N

B 5.7.5. Use of HAVING clause
You can also use HAVING clause along with GROUP BY clause. It has the same effect as the

WHERE clause, but applies only to the resulting records. In other words, this clause is used when we
want to select the output based on the value of an aggregate function.
For example, if you want only designations that have less than 2 employees, the statement

would be given as :
SELECT Desgn, COUNT(*) FROM Employees

- GROUP BY Desgn
HAVING COUNT(*) <2;

2k "

At

ARTIIO0 CURER v 3 ot Ly ipe
Sl i‘d Clekk_x‘_pilx,v Riaky «ifh o e

A i3

Peon

iraine JOE Latpotiol odi olgmars b
OEABEl R (i iRl o e s BN 5 sibe 3
W BOE VB regdl odi of 0007 ol e 2Won

HYY ¢

Tl Ehtenlng v

L amd M0G0 il
Here groups are made accor; S0 el ES e SFael 1Y
rding to 7 ‘ : :
Then only those clusters are selectedg whit:: htir:: g:zlngtnland ﬂ;: 12mmber of rows in them is counted.
You can use both WHE = ess 4
RE and HAVING clauses in a single statement when necessary.

E8USOL OPERATOR o2 imp s s

g o A T T
!

0 Ol b Sed Y

types of SQL operators :
B 5.8.1. Arithmetic Operators

Use of arithmetic operat.
B tics: Like updi: arI:d de?:e taorelgOk ltlp reri‘ords from tables or perform data manipulation
e one to perform. There are two s of arithmetic operators:
< Unary operator and % Binary operator - i
5.8.1.1. Unary Operator
The + and — signs come under Unary operators. These operators work on only one operand,
hence. they are.calle'd Unary qperators. If we write , it means that the value is 6 less than zero, hence
neggtlve. And if written then it means that the value is more than 6, hence it is positive. For example,
to display the names of all the employees of an Employees table whose Emp_no is greater than 6000,
then the SQL statement will be as follows :

SELECT Name FROM Employees
WHERE Emp_no=+6000;
The result of this query will be as follows :
Name

Sita Ram
Laxmi Narayan
Chandra Prakash
Laxman Das
Pritam Singh
Baboo Lal

8.8.1.2. Binary Operator

 Binary operators are use
Operators operate on two operan

tic expressions with two numbers. Since these

d to manipulate arithme
operators. Binary operators are as follows :

ds, they are called binary

+ (To addition)
— (To subtract)
* (To multiply)
/ (To division)
For example, the following SQL statement returns the data values of the Salary column for)
rows by adding 5000 to the Basic_pay and Basic_pay columns from the Employees table.
SELECT Basic_pay, Basic_pay+5000FROM Employee

The result of this query will be as follows :

Basic_pay Basic_pay + 5000
15.000 20,000
12,500 17,500
10,500 15,500
9,500 14,500
8,000 13,000
7.400 12,400
6.500 11,500
5,000 10000

W 5.8.2. Character Operators

This operator is used to manipulate vector strings. In general, is the vector operator. It is also
called Concationation Operator. Its format is as follows :

Stringl||String2

With the help of this operator, two strings can be joined together by an SQL statement. Column
names can also be used instead of String. Using this operator, a given string can be written like a
sentence by adding the given string with the data value in the column.

The following SQL statement returns the names of all employees from the Employee table
Joined with their Desgn field value.

SELECT Name||‘is’|[DesgnFromEmployees
Name|‘is'||Desgn
You will get the result of this query as follows :

Name || ‘is’ ++ Desgn
Radhey Shyam is Manager
Sita Ram is Asst Mgr
Gauri Shankar is Officer
Laxmi Narayan is Officer
Chandra Prakash is Head Clerk
Laxman Das is Clerk
Pritam Singh is Clerk
Baboo Lal is Peon

5 i Less than

Sl ‘ Greater than or equal to
[NOT] BETWEEN.._AND. Less than or equal to :
: 0 Between two values
[NOT]IN(list) LY _
Any of list values
[NOT]LIKE Match a charact ttern
a character pa
IS[NOT
(NOTINULL 4. iy NULL value

SELECT Name, Desgn FROM Employees
WHERE Basic_Pag>=10000;

The result of this query will be as follows :

Name Desgn
Radhey Shyam Manager
Sita Ram Asstt. Mgr
Gauri Shankar Officer

B 5.8.4. Set Operators

Set operators are used to represent the results obtained by two different queries as a single result,
corresponding to the operators. The set operators are as follows :

Opretor Meaning
Union

The records that are in the result of both the queries. But a record can only happen once.
Union All Records that are in the result of both the queries (a record can occur twice).

Intersect Only if both the queries contain the same records.

Minus Sorting the result of the first query from the result of both the queries.

The following SQL statement returns the information about the employees from the Employfees
table whose Basic Pay is less than 10500 and greater than 8000, bqt 1f any record from the following
SQL statement satisfies both the conditions, then it will not be printed twice.

SELECT*FROM Employees WHERE Basic_Pay<10500;
UNION

:; 27/09/2002
8995 | LaxmenDas Clerk 15/05/2003
9754 Pritam Singh Clerk 23/01/2005 6500
6547 Baboo Lal Peon 24/04/1998 5000
4563 Radhey Shyam Manager 12/04/1995 15000
6572 Sita Ram Asstt Mgr 28/06/1998 12500
5684 Gauri Shankar Officer 08/07/1997 10500

| M 5.8.5. Logical Operator
Logical operators are used in SQL statements to apply two or more conditions. The different
logical operators are as follows :
5.8.5.1. AND Operator
AND operator is used in SQL statement to satisfy two or more conditions. All the conditions of the
AND operator must be satisfied.
Example :
SELECT*FROM Employees WHERE Basic_Pay>950@ OR Emp_No0>5000;
5.8.5.2. OR Operator
The OR operator is used when one of the different conditions must be true.
Example :
SELECT*FROM Employees WHERE Basic_Pay>9500 OR Emp_No>5000;
Both AND and OR operators can be used together in a single SQL statement. They can be used
in any SQL statement select, insert, update or delete.

5.8.5.3. NOT Operator
NOT operator is used when True expression is to be False or False expression is to be True. This
operator will process all the rows in a table and display only those records which do not satisfy the
specified condition.
Example :
SELECT*FROM Employees WHERE NOT (Basic_pay<9000);

In the above example NOT operator will not display those rows from Employees table where the
value of Basic_pay field is less than 9000.
< Range Searching
‘When selecting data from a table in the form of a range, then use the BETWEEN operator. The
EN operator allows the selection of rows that contain values within the specified lower and

RS : : . §,:‘ 2

ﬂmmmm_ ng 58 & vowig 1
is g - th‘

operators i given as follows - hdumxwh#’zwm‘

J = lq -
BETWEEN. IN, LIKE. vy 1 m._l)
1 NOT
E AND 2 t
- t
OR g "
4 (Mmimm) :
59 SQL ALIAS srser o

SQL Aliasesaremedmtempmmﬂ\rmalﬂﬂewcdmmhaﬁnz,hﬁmﬂrmotsm

Mbtomakecohmmnamesrmdablepmmﬂ\ SQL Alias are created in two ways -
Column ahias

Table alias

The format of column SQL aliases is as follows -
SELECT column_name AS alias_name
FROM table_name:

Customers
2 Ana Trujillo AnaTrujillo |Awda e I Constiacion Mexico DE.
Emparedadosy helados |22 |
i § ~ .
3 -\momo Moreno Antonio Moreno Mznd:ms 2312 | Mexico DLE.
| Around the Hom Thomas Hardy |120 Hamover Sq. ' Londom
:
l I ANEES. s ko e g &
1996-11-14

38 8

AS Custonr Contactlhn AS [Contact

Poraon] FROH Custonf's SWEFT DR ARSI 3
_ Note : If there is a spnce in the column ahas name, then double quom:on (" "), or encloned in
squuhmkeu []\ gl
" If, we have to combme multiple four columns (Address, Cnty, Postal Codc and Coumry) to

create an alias, Address, then the SQL statement will be as follows :
SELECT CustomerName: Address+‘,'+ Postal Code +',’ + Country AS

Address FROM Customers
The format for creating table alias is as follows :
SELECT Column_name(s)
FROM table_name AS alias_name;
For example, the following SQL statement will return the Orders from the Customers table that
have Customerld=4 (Around the Horh). Here we will create 'C' and 'O’ table alias of 'Customers’ and

'Orders' table respectively :
SELECTO.OrderId,0.0rderDate C.CustomerName

FROMCustomersAS C,OrdersASO
WHEREC .CustomerName="“Around theHorn” ANDC.

CustomerId=0.CustomerId;

5.10. VIEWS

By using views, generally a table is created and information is stored in it. This information
needs to be protected from being accessed by each user for security reasons and we do not always
need to see the complete information of the tables created. Therefore, to repeatedly see the specified
information from a table, we create a separate object for some selected columns of that table, this
object is called View. It is also called Virtual table. The table on which the view is based is
described in the From Clause with the SELECT statement. In this way View is a sub-set for the
actual Columns of the table from which it is created.

SQL treats the View in the same way as its Base Table. In this way query can be generated from
View in the same way as it is generated from table.

The following are the main reasons for creating the view :

1. Database access as needed.
2. When data security is required.
3. When data irregularity is to be kept low while maintaining data security.

by FRO":“DIQN“.‘,'“ ik

i GROUP8521(;:::::::2:1?97‘0“{0“Lts’{‘):“;f'ﬂ s
For example, to create a viey p, eri”HAVING,fPr‘odic‘a;p, S : P
oommand 3 ol amed Emp on the Employees table, we will use the following
By this commanZ,IanVEi::V .AS SELECT*FROM Employees
Employees table are there, 5 created by the name of Emp, in which all the Columns of

According to the second exampl !
e .
Empl. Ple, a View is created on the Employees table with the name of

CREATVIEW Emp1 AS SELECT

Em
p_No, Name, Desgn, Basic_pay FROM Employees:

This command creates a View with
. the name Emp1
Desgn, Basic_pay Columns will be present in it. FOTOR 18 D i ANDTA

’ thszl/lilelzzv j:reatmg the view, you can change the name of those columns of the table, whicl.1 are kept
Like :
CREATEVIEW Emp2 AS
SELECT Emp_No “Empno”, “Name Empname”,
‘Desgn “post”, Basic_pay “salary” FROM Employees;
The names of the columns in the Views created by this command will be Empno, Empname,
post and salary.

B 5.10.2. To Select a Dataset from a View
Once the View is created, the query can be generated from it in the same way as the query is

generated from the table. Its format is as follows :

Draft :
SELECT <Column Namel>, <Column Name>2
FROM <View Name>; 2
Example : :
SELECT Emp_No, Name, Basic_pay FROM Empl;

No, Name and Basic_pay from Empl View.
. ting View. To generate query from View, you
t just like you do with table.

This command displays the list of Emp

ORDER BY clause cannot be used while crea
can use like, where, order by Clause in SELECT statemen

D e te & et ;
according to the following table struct

SEiE0 e

by
1&&,
S lea! i)

LI

2y b A ""{}&V-A Anmrtos il

,] PRIMARY KEY
t Account_FD_No Varchar2 10 NOT NULL
B N Varchar? 65 NOT NULL
DOB date |
Relationship Varchar2 20

CREATE VIEW Nominees AS SELECT Nomince No, Account FD_NO, Name FROM Nominee;

In this way, a View is created for the names of the nominees, which contains the specified
records of the Nominee table. Now let's complete the [nsert operation on this View.

INSERT INTO Nominees VALUES (N101@’', ‘SB431’, ‘Sahil’);
The following message is displayed after this command :
1 row created

When using View to complete the MODIFY operation, then the SQL statement will be given as
follows :
UPDATE Nominees SET NAME = ‘rajan’ Where Name = ‘Sharma’;

After executing this command, the following message is displayed :

1 row updated

When View is used to complete the DELETE operation, then the SQL statement will be given as
follows :

DELETE FROM Nominees WHERE NAME = ‘rajan’;
After the execution of this command, the following message is displayed :

1 row deleted

- View can be created from more than one table. To create a View from more than one Table,
JQIN is used in the WHERE Clause.

AN el
< ..,4.43’"’_5{, [0 aren

i X 1S 'cl‘eat R VAR X Tiel g v e (RN R Tl it $ 1
B CREATE R ‘.?d,f"«’m’f‘.‘,’° tables, Customers and Orders.
T o T A O BT AR Sise poaci ety

IR nomineD 3oL T B

VIEW Customers1 AS

SELECT Customer

City, Order 14

FROM Customers,

WHERE Orders Customer Id

When W; ;:mplete the Insert Operation on it, the following message is displayed :

._?177§: Can not modify more than one base table through

a join view

Customer 14 = Customers

follows : Plete the MODIFY operation, then the SQL statement will be given as

UPDATE Customers SET Cit
WHERE Customer Id= ‘g’

| Y = ‘Switzerland’
E When using View to com
|

plete the MODIFY operation, then the SQL statement will be given as
follows :

1 row updated.

In this way, Insert operation is not all
and Delete operation is allowed.

When the DELETE o
~ follows :

owed on View created from Multipletable while Update

peration is completed using View, then the SQL statement will be given as

DELETE FROM Customers WHERE Customer Id = .4’

After the execution of this command, the following message is displayed :
1 row deleted.

. 5.10.5. Updatable and Non-updatable Views

Updatable Views : Views are used as Minitables. Like Table, Views can also be used for. data
Manipulation, that is, Insert, Update and Delete operations can be comipietedaby iive jamer ‘wii Viws.

en data manipulation is done on Views, it is called Updatable views. For this it is necessary to
fulfill the following points :

| | s.xo.c. Common Restrictions on Updatable Views i
The following conditions apply in respect of View created from Single or Muluplcublu The

following options are not included in the definition of Updatable View :
(i) Aggregate Functions
(ii) DISTINCT, GROUP BY, HAVING Clause
(i) Sub-queries
(iv) Constants, Strings or Value Expressions

(v) UNION, INTERSECT, MINUS Clause
(vi) Ifa View is defined by another View, then the Second View should be updatable.

Note : If user tries to perform insert, update, delete operation on View which is created from
Non-updatable View, it returns an error message.

M 5.10.7. Dropping a View
To remove a View from the database, use the DROP VIEW command. Its format is as follows :

Draft :
DROP VIEW <View Name>;

Example :
DROP VIEW Customersl

The View named Customers! gets removed by this command.

M 5.10.8. Advantages of View

Creating a view gives us many benefits; like :

1. Only a small part of the database is visible to the user. This makes the database more secure.

It becomes easy for the user to give queries.
Views reduce the complexity of SQL statements.
Views can join and simplify multiple tables into a single virtual table.
The user sees the database according to his fixed view. Due to this, changes in the structure of
the database have no effect on it.
6. The user can view and control the changes made to a database with the help of views.

A R N

| When a SELECT Statement g : A R G e R
3 used to R ‘ L .

B e s ot e . gt e

defined criteria specified in the sor” 2 S3Uential search to locate the records that mateh the user

sel . : .
column of group of columns i 4 tabT:_t Statement. An index is an ordered list of the contents of a

B 5.11.1. To Create an Index

An index can be created
included in the index can be of

(i) Simple Index
(i) Composite Index

(i) Simple Index : An index created on a
format for creating Simple Index is as follows

Draft :

On one or more columns. Index based on the number of columns
the following types

(iii) Clustered Index
(iv) Unique Index
single column of a table is called a simple index. The

CREATE INDEX <Indey Name> ON <Table Name> (<Column Name>);

For example, to create Simple Index on Customer Id Column of Customers table, we will use the
following command :

CREATE INDEX 1idx1 ON Customers (Customer Id):

(i) Composite Index : Index created on more than one column is called Composite Index. Its
format is as follows :

Draft :

CREATE INDEX <Index Name>
ON <Table Name> (<Column Namel>, <Column Name2>);
Example :

CREATE INDEX idx2 ON Customers (Customer Id, Customer Name):

(iii) Clustered Index : Clustered Index breaks the Index Key into Prefix and Suffix copies. Its
format is as follows :
Draft :
CREATE INDEX <Index Name> ON <Table Name>
(<Column Namel>, <Column Name2>,...) Compressi;

Ty

sau | Database Management System

Example : , b
CREATE INDEX idx ON Customers (Customer Id, Customer Name)

Compressi;
(iv) Unique Index : Unique index can also be created on one or more columns. If an index is
created on a single column then it is called Simple Unique Index. Its format is as follows :
Draft :
" CREATE UNIQUE INDEX <Index Name> ON <Table Name> (<Column Name>) ;

If an index is created on more than one column, then it is called Composite Unique Index. The
format of Composite Unique Index is as follows :

Draft : :
CREATE UNIQUE INDEX <Index Name> ON <Table Name> (<Column

Name>, <Column Name>)
For example, to create Unique Index on Customer Id of Customers Table, we will use the

following command :
CREATE UNIQUE INDEX id3 ON Customers (Customer Id);

[5.11.2. To Create Multiple Indexes on a Table
The database engine SQL allows multiple indexes to be created on each table. It prepares a
query plan on the index, which must be used to retrieve specific data based on the ORDER BY

clause or WHERE clause specified in the SELECT statement.
Whenever a SELECT statement is executed, it creates a query plan that identifies the methods to

return the data.
If a SELECT statement is used without WHERE clause and ORDER BY clause, it does not use

the indexes created on the table to retrieve the data.

i 5.11.3. Advantages of Index
Following are the major advantages of indexing tables in SQL :
(i) The process of searching data on the basis of a specific matter or range is fast.

(ii) After indexing, the data in the table is stored in a sequential format.

(ii1) Reorganize an index-organized table.

(iv) Reorganize an index-organized table online.

(v) An index-organized table partition can be reorganized without rebuilding its secondary

indexes.
All those commands can be used in Index-organized table, which are used in ordinary table.

After indexing a table, that table does not use extra space in the memory, but shares the same

(vi)
(vii)
space only.
B 5.11.4. Disadvantages of Indexes
Al'though the disadvantages are negligible compared to the advantages of indexing; The
following are the major disadvantages of the index :
(i) Indexing increases the disk space requirements of our database.
(i1) It slows down the DML (insert, update, delete) commands.

IXFTR AT BB R L RN RS B g F

by Oracle Corporatlon in the late 1980s as a

The PL/SQL programming language was developed
procedural extension language for SQL and the Oracle relational database. Following are some

notable facts about PL/SQL :
& PL/SQL is a fully portable, high performance transaction processing language
& PL/SQL provides a built-in interpretation and OS independent programming
environment.
¢ PL/SQL can also be called directly from the command-line SQL*Plus interface.
Direct calling can also be done from external programming language calls to the
database.
& The general syntax of PL/SQL is based on ADA and the Pascal programming language.
& In addition to Oracle, PL/SQL is available in the Times Ten in-memory database and
IBM DB2.
M 6.1.1. Features of PL/SQL
PL/SQL has the following features :
< PL/SQL is tightly integrated with SQL.
% It provides extensive error checking.
% It provides many data types.
< It provides a variety of programming structures.
% It supports structured programming through functions and procedures.
« It supports object-oriented programming.
% It supports the development of web applications and server pages.
B 6.1.2. Advantages of PL/SQL

PL/SQL has the following advantages :
% SQL is the standard database language and PL/SQL is strongly integrated with SQL.

PL/SQL supports both static and dynamic SQL. Static SQL supports DML operations
and transaction control from PL/SQL blocks. In Dynamic SQL, SQL allows DDL
statements to be embedded in PL/SQL blocks.

PL/SQL allows a complete block of statements to be sent to the database at a time. It
reduces network traffic and provides high performance for applications. PL/SQL gives

A delimiter i . : h
muiter 1s a symbol with a special meaning. The following is a list of delimiters in PL/SQL :

Delimiter

Description

+s %) *’/

Addition, subtraction/negation, multiplication, division

%

Attribute indicator

Character string delimiter

Component selector

Expression or list delimiter

Host variable indicator

Item separator

Quoted identifier delimiter

Relational operator

Remote access indicator

Statement terminator

Assignment operator

O FanErEYEe)

ff:l ‘ T§77
., A= | Different versions ofNOT EQUAL
N 6.16. The m Comments

ngnm comments are explanatory statements that can be included in PL/SQL code, which
helps in writing and reading the source code. All programming languages allow comments in some

form or another.
PL/SQL supports single line and multi line comments. All characters within a comment are

ignored by the PL/SQL compiler. PL/SQL single-line comments begin with the delimiter (double
hyphen) and multi-line comments are enclosed by /* and */.

DECLARE

-- variable declaration
message varchar2 (20) := 'Hello, World!';
BEGIN

/*
* PL/SQL executable statement(s)
W
dbms_output.put_tine(message);
END;

/

When the above code is executed at the SQL prompt, it produces the following result :

Hello World
PL/SQL procedure successfully completed.

N 6.1.7. PL/SQL Program Units
~ PL/SQL unit is any of the following :
¢ PL/SQL block
¢ Function
% Package

¥

Gt ures, Gty k. I u ALY R g
1g web applicationg s B, Toops y kans i o Increases its perf A"“’d‘
ik ti:: handling 1y STVF ages PL/ 'm le packages, triggers. PL/SQL is designed for

 piding, C’ZQLP' Ing, and object-oriented dastg It;;euppons features such ag encapsulation, data

- PL/SQL is a programming | . : '

100pS, Operators, etc. It is mfi ? "suage QL g is used to writ 1 s o

foop ! 1 e e A select/in, P ete programs with variables,

gpplication fanguage; like-java; pyp ete., as th 'nsert/update/delete. It is

> kept in the category of

formatted and displayed through it 0S¢ reports, web pages and screens can be created,
Procedure is a stored program f;, :

perform a specific task. It jg similar to &m Which we can pass parameters. Procedures are used to

: € procedure of other programmin
, g languages.
Procedure works like a function, pyt the return valye in the function is

it is not done in the pro 2 : already determined, while
it 's, Bting o fun t'p c§dure. Ca.llmg a function and calling a procedure are different methods.
While calling clion, its valye ig either taken in 4 variable or printe

i led direct] d in the output. While the
procedure is cal y and the necegs .
the Oracle database like Function, which th s eameers are passed. Procedures are also Mo

: : € user can call as per the requirement.
PL/SQL is an extension of Structured

6.2. WHAT IS PROCEDURE IN PL/SQL?

PL/SQL is a block-structured lan

guage that enables developers to combine the power of SQL
with procedural statements.

A stored procedure in PL/SQL is nothing but a series of declarative SQL statements that can be
stored in the database datalog. A procedure can be thought of as a function or a method. They can be
invoked through triggers, other procedures or applications on JAVA, PHP etc.

All the details of a block are passed to the Oracle engine at once, which increases processing
$peed and reduces traffic.

A procedure in PL/SQL is a subprogram unit consisting of a set of PL/SQI', st:.atements that can
called by name. Each procedure in PL/SQL has its own unique name by wlpch it can be referred
-nd called. In Oracle Database this subprogram entity is stored as a database object.

& -~

e MM”&IW&I&MM b

: ';\-a .0 nucﬂnmmnmm»ummm“
it cannot return any value through a RETURN statement.

’ & Procedures cannot be called from a direct SELECT statement. They can be called from
another block or through the EXEC keyword.

Syntax :
CREATE OR REPLACE PROCEDURE

<procedure_name>

(
<parameter| IN/OUT <datatype> ‘
:

[IS | AS]
<declaration_part> |
BEGIN
<ececution part> |
EXCEPTION |
<exception handling part>
END;

% CREATE PROCEDURE instructs the compiler to create a new procedure in Oracle. The
keyword 'OR REPLACE' instructs the compiler to replace the existing procedure (if any)

with the current one.
% Procedure name must be unique.

The keyword ‘IS’ will be used when the stored procedure in Oracle is nested in some
other block. If the procedure is standalone then ‘AS’ will be used. Apart from this coding

standard, both have the same meaning.

‘Welcome

Ao bt al hang PHISTS)S 18 _ DO,
/ S w2 8 VI EY

 pc veloone.nsg (dstabase managenent systen'):

@ C°d°‘Il§‘,° I+ Create procedure with name ‘wel msg’ and one parameter ‘p_name’ of
type ; & :
& Code line 4 : Printing the welcome message by abbreviating the input name.
& The procedure is compiled successfully. ; A
& Code lzne 7 : Calling the procedure using EXEC command with ‘database man’agemeﬂt
system’ parameter. The procedure is executed and the message “Welcome” to the
‘database management system’ is printed.
PL/SQL-Procedures
A subprogram is a l.mit/module that performs a specific task. These subprograms combine to
form larger programs. It is basically called ‘modular design’. A subprogram can be called by another
subprogram or program, which is called the calling program.

shaemme’) sloRIn’9x

A subprogram can be made :
& at the schema level
& inside a package
¢ inside a PL/SQL block
At the schema level, a subprogram is a standalone subprogram. It is created with the CREATE

PROCEDURE or CREATE FUNCTION statement. It is stored in the database and can be deleted
with the DROP PROCEDURE or DROP FUNCTION statement.
A subprogram created inside a package is a package subprogram. It is stored in the database and
can only be removed when the package is removed with the DROP PACKAGE statement.
PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters.
PL/SQL provides two types of subprograms :
& Function : These subprograms return a value, mainly used to calculate and return a
value.
& Procedures : These subprograms do not return value directly, mainly perform an action.

This section is enclosed between the BEGIN and END keywords and is a mandatory section,
It contains PL/SQL statements for the execution of the program. It 1_mm contain at least one
executable line of code, which can be just a NULL command to indicate that nothing shq_xld

“be executed. a2
3¢ Exéeption Handling - :
This section starts with the keyword EXCEPTION. This optional section contains the

exception(s) that handle errors in the program.

Each PL/SQL statement ends with a semicolon (;). PL/SQL blocks can be nested inside other
PL/SQL blocks using BEGIN and END. The basic structure of PL/SQL block is as follows :

DECLARE
<declarations section>
BEGIN
<executable command(s)>
EXCEPTION
<exception handling>
END;
The ‘Hello World' Example
DECLARE
message varchar2(20) : = ‘Hello, World!’;
BEGIN
dbms_output.put_line(message);
END;
/

' The end; END OF LINE SIGNAL PL/SQL BLOCK / To run the code from the SQL command
line, type “/” (slash) at the beginning of the first blank line after the last line of code. When the
above code is executed at the SQL prompt, it produces the following result :

Hello World

PL/SQL procedure successfully completed.

rocedure_bodys

& Procedure :

allows modification of an
ns the names, modes, and

assgd from outside and OU
outside the procedure,

ontains the executable part,

existing procedure.
types of the parameters. IN represents
T represents the parameter that will be

¢ The parameter)iy contaj
the value that wil| pe p
used to return g value

& The procedure-body c

@ The AS keyword is used instead
of the IS keyword t teas : :
Example : The following examp yword to create a standalone procedure

World!" on ilic scicen when executed - le creatcs a simple procedure that displays the string 'Hello

—
CREATE OR REPLACE PROCEDURE greetings
AS

BEGIN

doms_output.put_line (‘Hello World!’).
END;

/

When the above code is executed using SQL Server, it will give the following result :
Procedure created.

B 6.2.3. Executing a Standalone Procedure
A standalone procedure can be called in two ways :
% Using the EXECUTE keyword
% Calling a procedure name from a PL/SQL block.
The above procedure named ‘greetings’ can be called with the EXECUTE keyword :
EXECUTE greetings;
The above call will display :
Hello World
PL/SQL procedure successfully completed.

WRe 1 A SRR T T)Qiloiui‘«ﬂ

DROP PROCEDURE procwuro-nan- | 10 oyt 9h 5 g &

u‘. ,,![Youmdmptbegmennapmoedureuangthefollowmgmtemmt RN R o
o fiw < DROP PROCEDURE greetings; iy e h ; F5 e

A parameter is a variable or placeholder ui any vahd PL/SQL datatype through which the
PL/SQL subprogram exchanges values with the main code. This parameter allows input ¢,
subprograms and output from these subprograms.

% These parameters are included in the calling statements of these subprograms to mtem
the values with the subprogram at the time of construction.

& The parameters in the subprogram should not be mentioned at the time of declaration, ag
the size is dynamic for the type.

Parameters are classified on the basis of their purpose :
1. IN : The IN parameter allows the procedure to pass a value. This is a read-only parameter.
Inside the procedure, the IN parameter acts like a constant.
« This parameter is used to give input to the subprogram.
< It is a read only variable inside the subprogram. Their values cannot be changed inside
the subprogram.
% In the calling statement, these parameters can be a variable or a literal value or an
expression, for example, it can be an arithmetic expression; For example, 5 * 8' or ‘a/b’
where ‘a’ and ‘b’ are variables.

< By default, parameters are of type IN.

2. OUT : An OUT parameter returns a value to the calling program. Inside the procedure, the
OUT parameter acts like a variable.

% This parameter is used to get the output from the subprogram.

% It is a read-write variable inside the subprogram. Their values can be changed inside the
subprogram.

~ Typically, the main block Wi
w blocks to the subpro RE
plock. In case of functions g RE
value is always specified a¢ g, ti 0t is also to return a valye, T datatype of thi
valid PL/SQL data type. me of declaration of the function valye, 'l'he::type can :ef :;
N & OUT Mode Example 1
This program finds the
IN mode and returns its min
DECLARE
a number;
b number;
¢ number;
PROCEDURE findMin (x IN numper Y IN number, z OUT number) IS
BEGIN :

IF x < y THEN

Minimum of tyq ya : -
'Mum using ouT par:;fe.tg?re’ this procedure takes two numbers using

TRV ') .

ELSE TF: r i
END; .
BEGIN |

a.: = 23:

b: = 45;

findMin (a, b, ¢):

dbms_output.put_line (’Minimum of (25, 45) : ' || ¢):
END;

£

DECLARE
a nulbor. :
PROCEDURE sQuafiﬂui“Y"“Iﬂ OUT Rumber) 'IS' a0t 9t Iasni 200V aulerieg
|BEGIN
Ly xyG

1END;
BEGIN

a:= 23;

squareNum(a);

dbms_output.put_line(’'square of (23): ' || a);
END;
/

.;

When the above code is executed at the SQL prompt, it produces the following result :
Square of (23)

PL/SQL procedure successfully completed.

6.4. METHODS FOR PASSING PARAMETERS

Actual parameter can be passed in three ways :
< Positional notation
< Named notation
< Mixed notation
B 6.4.1. Positional Notation

In positional notation, this procedure can be called.
findMin(a, b, c, d);

In positional notation, the first real parameter is substituted for the first formal parameter; The
second actual parameter is substituted for the second formal parameter, and so on, a is substituted for
X, b is substituted for y, c is substituted for z, and d is substituted for d. is replaced by m.

M 6.4.2. Named Notation

In named notation, the actual parameter is associated with the formal parameter using the arrow
symbol (=>). The procedure call will be like the following-

findMin(x=>a, y=>b, z=>c, m=>d):

G, :"; : : ‘im 5 e\’ '.\1 1,_‘>‘\" S : LR S e 8 .‘:,. St

o ficquently in ey ﬂmm X bplication, REvacbss, A IS
~is delivered. 1100 in & ginpg s » led
o gle conn, o1 e iccadicd

‘@ They reduce traffic bet,?,,
already fed intq th o
application.

¢ They add code reusabifify: ot 11/ 3o etyn)

such as CC++ anq JaVal_ty’ Similar to how functions and methods work in other languages

¢ databage -and‘abm and the

T e be sent repeatedly through the

66. DISADVANTAGES OF PRocepyge

S
& Stored procedures | Gl Re
a maximum bounilano;aulzs‘: lot of memory usage. The database administrator must set
application. many stored procedures are possible for a particular

% MySQL does not provide functionalj
Syntax to drop a procedure :
DROP PROCEDURE pProcedure_name

Example : DROP PROCEDURE GetStudentDetails

6.7. SIMILARITIES BETWEEN PROCEDURE AND FUNCTION

% Both can be called from other PL/SQL blocks.

& If theﬁ exception raised in the subprogram is not handled in the subprogram exception
handling section, it will propagate to the calling block.

% Both can have as many parameters as needed.
% Both are considered as database objects in PL/SQL.

6.8. PROCEDURE vs. FUNCTION : KEY DIFFERENCES

ty for debugging stored procedures.

Procedure , Function
¢ Used mainly to execute certain process. e Used mainly to perform some calculation.
* Cannot be called in SELECT statement. e A function that contains no DML statement can

be called in SELECT statement.
¢ Use RETURN to return the value.

* Use OUT parameter to return the value.

s i
o0 A

et o

£
i3

\

1. PL/SQL Block
2. PL/SQL Engine
3. Database Server
1. PL/SQL Block
This is the component that contains the actual PL/SQL code.
In this, there are different blocks to divide the code in logical form.
It also contains SQL instructions, used to interact with the database server.
All PL/SQL units are considered as PL/SQL block and it is the first step of the
architecture which acts as the primary input. |
These are the different types of PL/SQL Unit
Anonymous Block
Function
Library
Procedure
Package Body
Package Specification

L

S PSS

i i nent of PL/SQL unitwh;cﬁ m the data.
oM YL/, Soed o WA N ey dorvic
hnspwhmthQmenuMawmme
i T R L R
FENNSE 358 LrRu rih § RS 4

g 6.10.1. Conversion Functions

(string, format)

TO_NUMBER
(text, format)

anverts the given string to date. The
string should match with the format.

Converts the text to number type of
the given format. In format ‘9’
denotes the number of digits.

These built-in functions are used to convert one datg type to another
J‘l“cﬁ“" Name Usage Example
TO CHAR Converts the other data type to | TO CHAR(123);
character data type. " ,
TO DATE

TO_DATE(2015-JAN-21",
‘YYYY-MON-DD);
Output:1/15/2021

Select TO_NUMBER(‘1234°, ‘9999™)
from dual;

Output:

Select

TO_NUMBER('l ,234.45''9,999.99")
from dual;

Output: 1234

B 6.10.2. String Functions

These are the functions that are used on the vector data type.

sih
yarntaiad ol

» Lis oHe

'UPPER (text)

LOWER (text)

INITCAP (text)

LENGTH (text)

LPAD (text,
length, pad_char)

RPAD (text,
length, pad_char)

LTRIM (text)

RTRIM (text)

andeiz S00E too ol LIRRG

| text, start,length) |
| o

A

oo
g donta
Returns the uppercase of the provided
text

Returns the lowercase of the pﬂ!\;lded
text 4 el i

zt i A *Ia‘ lﬁ%@"

Returns the given text with the starting
letter in upper case.

Returns the length of the given string.

Pads the string in the left side for the
given length (total string) with the
given character.

Pads the string in the right side for the
given length (total string) with the
given character.

Trims the leading white space from the
text.

Trims the trailing white space from the
text.

2 s26datsd]

Btinays YO8 urd anliuY i &
Select uppet(‘welcomej.),ﬁfom dual;
Output : WELCOME

LRI T W T
Selgét ywer (‘AerOpLane’) from
~dual; T BT

. Output : aerdplanev ;

Select (‘welcome’) from dual

Output : Welcome ol
Select : (‘my story’) from dual
Output : My Story

Select LENGTH (‘welcome’) from
dual;

Output : 7

Select LPAD (‘welcome’, 10, °§’)
from dual;

Output : $$$$ welcome

Select RPAD (‘welcome’, 10, *-%)
from dual
Output : welcome----

Select LTRIM (‘welcome’) from dual;
Output : Welcome

Select RTRIM (‘welcome’) from dual;

Output : Welcome

Fosan

Output : 10/4/2021 2:14:34 PM
1 1052021 i)
NTHS BET- Retums the WO o Y ST 3N
‘ﬁEN between two daqu” * MONths | Select MONTHS_BETWEEN
: i (sysdate+60, sysdate) from dual;
e i Output : 2

i

6.11. PLISOL TRIGGERS
Triggers are stored programs.
table, then Triggers are automati
a DML statement is executed, the
Database

' Whenever any action like-i
tically executed. Tri

trigger executes

nsertion, deletion, updates are done in the
ggers cannot be called or invoked because whenever
its arp.

i

Applications

iz N Table 1
UPDATE T SET...; =

INSERT INTO T ...; >

—

Update Trigger
BEGIN
............. Insert Trigger
BEGIN
............. Delete Trigger
BEGIN

LDELETE FROM T i

IO

~ {INSERT[OR]| UPDATE[OR]

~ [OF col_name] B e o
ON table_name /' ' MU1 - et : |
[REFERENCING OLD AS o ﬁEw’AS] _ g
[FOR EACH ROWY ¢/ WU I9lIE | adisfom 1 oo off
WHEN (condition)

BEGIN
---- sql statements

END;
W 6.11.2. Types of Triggers

Triggers are of two types :)
1. Row level trigger : Row level trigger occurs when update, deletion and isertion occurs in

each row.
2. Statement level trigger :
executed.

B 6.11.3. Uses of Triggers

1. Automatically generate virtual column values.

. Log events

2
3. Prevent invalid transactions
4. Enforce complex business or referential integrity rules that the user cannot define with a

constraint.

B 6.11.4. Advantages of Triggers

Triggers have the following advantages :
Trigger generates some derived column values automatically.

Enforces referential integrity
Event logging and storing information on table access, Auditing

Statement level trigger occurs when each SQL statement is

R R

Synchronous replication of tables

END;

Declaration-statement,

Executable-statements
Exception-handltng-statenonts

&

L 4

LR

L 4

Here, CREATE [OR RE

o PL RN < ol
existing trigger with trigger nAamCEE] TRIGGER trigger_name : Creates or replaces an

{BEFORE | AFTER | INSTEAD
OF} : i p >
INSTEAD OF clause is yseq to cmte}Mgtqﬁfmm PV et

INSERT [OR
{ [OR] | UPDATE [OR] | DELETE} : It specifies the DML operation.
[OF col_name] : It specifies the name of the column to be updated.
[ON col_name] : It specifies the name of the table associated with the trigger.
[REFERENCING OLD AS o NEW AS n] : It allows you to refer new and old values for
various DML statements like INSERT, UPDATE and DELETE.
[FOR EACH ROW] : This specifies a row-level trigger, i.e. the trigger will be executed
for each row affected. Otherwise the trigger will execute only once when the SQL
statement is executed, which is called a table level trigger.

WHEN (condition): It provides a condition for the rows that will cause the trigger to fire.
This clause is valid only for row-level triggers.

Example : Customers would use the table :
Select * from customers;

D NAME AGE ADDRESS | SALARY
1 Ramesh 32 Ahmedabad 20000.00

2 Khilan 25 Delhi 22000.00

3 Kaushik 23 Kota 24000.00

N N (NEW.ID > @) S ; oA Wi o oA v a0 G REREE R
"Aﬁv' DECLARE g g G (W08 HIAT G013
sal_ dtff nuubcr 3
BEGIN
sal_diff := : NEW.salary-:0LD.salary; ‘
dbms_output.put_line ('0ld salary:' || : OLD.salary);
dbms_output.put_line('New salary:' || "NEW.salary);
dbms_output.put_line ('Salary difference :' || sal_diff);
END;
/ —

When the above code is executed at the SQL prompt, it produces the following result—

Trigger created.
Check the salary difference by procedure : Use the following code to get the old salary, new

salary and salary difference after the trigger is done :
DECLARE
total_rows number(2);
BEGIN
UPDATE customers
SET salary = salary + 5000;
IF sql%¥notfound THEN
dbms_output.put_line('no customers updated');

ELSIF sql%found then

total_rows =
sql¥rowcount;
dbms_output.put_line(total_rows || ‘customers updated’);
END IF;
END;
7

Salary difference: 5000
~ 0ld salary: 22000
~ New salary: 27000
i Salary difference: 5000
~ Old salary: 24000
New salary: 29000
Salary difference: 5000
Old salary: 26000
New salary: 31000
Salary difference: 5000
Old salary: 28000
New salary: 33000
Salary difference: 5000
| Old salary: 30000
New salary: 35000
Salary difference: 5000
6 customers updated

Note : Every time this code is executed, both the old and new salaries are increased by 5000 and
hence the salary difference is always 5000. The following points need to be considered here -

% The OLD and NEW references are not available for table-level tr

iggers, but you can use
them for record-level triggers.

% If you want to query the table in the same trigger, you must use the AFTER keyword,
because the trigger can query the table or alter it again only after the initial changes have
been applied and the table is back in a consistent state.

% The above trigger is written in such a way that it will fire before any DELETE or
INSERT or UPDATE operation on the table, the trigger can be .wntten on one or
multiple operations, for example, BEFORE whenever the trigger will fire , the record
will be deleted using DELETE operation on the table.

W 6.11.6. Triggering a Trigger

Performs some DML operations on the Customers table. Here is an INSERT statement that will
S
Create a new record in the table :

PL-sQL | 155

INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)

VALUES (7, 'Kriti', 22, 'GGPS', 7500.00);

156 | Database Management System

In the above create trigger, when a record is created in the CUSTOMERS table,
display_salary changes will be fired and it will display the following result :
0ld salary:
New salary: 7500
Salary difference:
As this is a new record, the old salary is not available and the above res :
perform another DML operation on CUSTOMERS table. UPDATE statement will update the

existing records in the table :

ult is null. Now we

UPDATE customers
SET salary = salary + 500
WHERE id = 2;

Create the above trigger when a record is updated in the CUSTOMERS table,

display_salary_changes will be fired and it will display the following result :
0ld salary: 1500
New salary: 2000
Salary difference: 500

6.12. DIFFERENCE BETWEEN TRIGGER AND STORED PROCEDURE

Trigger Stored Procedure

Trigger is an act which is performed | Stored procedure is a set of functionality which is
automatically before or after an event has | executed when it is explicity invoked.
occured.

It cannot accept parameters. It can accept parameters.
A trigger cannot return any value. A stored procedure can return a value.
It is executed automatically on some event. It needs to be explicitly called.
Trigers are used for insertion, update and | Stored procedures are often used independently
deletion. in the database.
6.13. DIFFERENCE BETWEEN SQL AND PL/SOL
S.No. Key SQL PL/SQL
1. | Definition | SQL is Structural Query Language for | PL/SQL is a programming language
database. using SQL for a database.
2. | Variables | SQL has no variables. PL/SQL has variable, data type etc.

Control SQL has no FOR loop, if control and | PL/SQL has FOR loop, while loop, if
Structures | similar structures. controls and other similar structures.

PL-sQL | 157
4. | Operations SQL can =

i Xecute single operation at | PL/SQL

can perform multiple

operations at a time.
5. | Language SQLisagq :
Type Cclarative language. PL/SQL is procedural language.
6. | Embedded SQL can , :
block. © embeddeq i a PL/SQL PL/SQL can also be embedded in SQL
1a
7. | Interaction | SQr directly ; 8

1 /SQL does not directly interact
B Orentation with database server.
: PL/SQL s application oriented

9. | Objective | SQL s e language.

d to write ueri i i
and ¢ queries, create PL/SQL is used to write program
i teme:fscme DDL apq DML | blocks, functions, procedures, triggers
| — . _and packages.
6.14. PLISQL CURSQR

ontext area ig contr.
select statement and the rows o

A cursor is passed to g
one at a time. There are two

¢ Implicit cursors
¢ Explicit cursors

B 6.14.1. PL/SQL Implicit Cursors

Program to fetch ang Process the rows returned by the SQL statement,
types of cursors 3

process the statements when DML statements like INSERT,
UPDATE, DELETE etc. are executed.

Oracle provides some features known as implicit cursor features to
operation. Some of them are—%FOUND, %NOTFOUND%,

For example, when executing SQL statements like INSERT, UPDATE, DELETE, the cursor
attributes tell whether any rows are affected and how many. If you run a SELECT INTO statement in
a PL/SQL block, the implicit cursor attribute can be used to find out whether any rows are returned
by the SELECT statement. If no data is selected, it will return an error. The following table explains
the cursor position with each of its properties.

check the status of DML
ROWCOUNT and %ISOPEN.

Attribute Description

i 1 tements such as INSERT, DELETE, and
%FOUND Its return value is TRUE if DML statem INSERT, DELFTE, i
UPDATE affect at least one row or more rows or a
returns one or more rows. Otherwise it returns FALSE.

158 | Database Management System

0, . .

Y%NOTFOUND | Its return value is TRUE if DML statements such as INSERT, DELETE, and
UPDATE do not affect any rows, or a SELECT INTO statement does not return
any rows. Otherwise it returns FALSE. This is the exact opposite of “%FOUND

%ISOPEN It always returns FALSE for implicit cursors, because a SOL cursor s
automatically closed after executing its associated SQL statement.

%ROWCOUNT | Selects the number of rows affected by DML statements such as INSERT,
DELETE and UPDATE or returned by a SELECT INTO statement.

—

B PL/SQL Implicit Cursor Example

Create customers table and have records :

D NAME AGE ADDRESS SALARY |
1 Ramesh 23 Allahabad 20000
2 Suresh 22 Kanpur 22000
3 Mahesh 24 Ghaziabad 24000
4 | Chandan 25 Noida 26000
5 Alex 21 Paris 28000
6 | Sunita 20 Delhi 30000 |

Let us execute the following program to .:>date the table and increase the salary of each
customer by 5000. Here, the SQL %ROWCOUNT attribute is used to determine the number of rows
affected :

Create procedure :
1. DECLARE
2 total_rows number(2);
3. BEGIN
4. UPDATE customers
S SET salary = salary + 5000;
6 IF sql% notfound THEN
7 dbms_output.put_line('no customers updated’)
8 ELSIF sql%found THEN
9. total_rows :=sql%rowcount;
10. dbms_output.put_line(total_rows || ‘customers updated’)
11. END IF;
12. END;
20 A

Output : 6 customers updated
PL/SQL procedure successfully completed.

Now, if you check the records in the Customers table, you will find that the rows have been

updated.

PL-saL | 159
4 select */ from Customers;

D T
Tm%* ADDRESS SALARY
ey 23 Allahabad 25000
B | Naabvesh 22 Kanpur 27000

24 Ghazi: 29000
4 CTandan 25 Noida 31000
e [
| — *&lhi 35000
§ 6.14.2. PL/SQL Explicit Curgop
cmf;plflitstcg;s:eg nggﬁ:le(:hzyd‘ehcelair’;Zirammer to get more control over the context area. These
statement that returns more thg

The following is the Syntax
CURSOR cursor_name

2. Opening a cursor to allocate memory,
3. Fetch cursors to retrieve data.
4. Close the cursor to release

1

the allocated memory.
. Declare the cursor : [t de

e fines the cursor with a name and associated select statement.
Syntax for explicit cursor declaration

1. CURSOR name IS
2. SELECT statement;
2. Open the cursor : It is used to allocate memory for the cursor and to make 1t easier to
fetch the rows returned by the SQL statement.
Syntax for cursor open : OPEN cursor_name;

3. Fetch the cursor : It is used to access one row at a time. You can take rows from the
following opened cursor like this

Syntax for cursor : FETCH cursor_name INTO variable list;
4. Close the cursor : It is used to release the all
used to close the above opened cursors.

Syntax for cursor close : Close cursor_name;

B PL/SQL Explicit Cursor Example

Explicit cursors are defined by the programmer to gain more control over the context area. It is

defined in the declaration section of a PL/SQL block. It is built on a SELECT statement that returns
more than one row.

ocated memory. The following syntax is

160 | Database Management System

Let us take an example to demonstrate the use of an explicit cursor. In this example, we are
using the already created Customers table.

Create Customers table and have records :

1D NAME AGE ADDRESS SALARY e
| | Ramesh 23 Allahabad 20000
2 Suresh 22 Kanpur 22000 il |
3 | Mahesh 24 Ghaziabad 24000 |
4 | Chandan 25 Noida 26000 |
5 | Alex 21 Paris 28000
6 | Sunita 20 Delhi 30000 S|
Create procedure :
Execute the following program to retrieve the name and address of the customer :
1. DECLARE
2 c_1d customers.id¥%type;
3 c_name customers.name%type:
4 c_addr customers.address%type;
5 CURSOR c_customers 1is
6. SELECT id, name, address FROM customers;
7. BEGIN
8 OPEN c_customers:
9 LOoP
10. FETCH c_customers into c_id, c_name, c_addr:
11. EXIT WHEN c_customers%notfound:
12. dbms_output.put_line(c_id || || c_name || |l c_addr):
13. END LOOP;
14. CLOSE c_customers;
15. END;
16. /
Output :

1. Ramesh Allahabad

2. Suresh Kanpur

3. Mahesh Ghaziabad

4. Chandan Noida

5. Alex Paris

6. Sunita Delhi

PL/SQL procedure successfully completed.

PL-sQL | 161
415 PLISOL TRANS ACT) g s
transaction is a sequenc,e of : : '
blod[: where the following ryjq. app(l))lr)?ratlons eXecuted by executing SQL statements i |
¢ If we have 3 Set of stat

€ments iy, a transaction
statement ai

f: lS, the efi
back.

Oracle PL/SQL ig tran

e Saction grje
PL/SQL transaction ig a se

ries of S

Transaction has itg be

ginning anqg end. A transaction starts when one of the following events
L statement 1s execut

¢ The first SQ
Issuance of each new SQL state

- ¢

ed after Connecting to the datatable.
A transaction ends

men

ABLE Statement, is issued; Because in that case
matically performed.
¢ A DCL statement, such as a GRANT

i statement, g issued; Because in that case a
COMMIT is automatically performeq.
User disconnected from database.
When the user exits SQL*PLUS by issuing the EXIT COmmand, a COMMIT is
performed automatically.

SQL*Plus terminates abnormally,

In case a DML statement fails, a rollback is automatically performed to undo that DML,
statement.

N¥ou can use COMMIT, ROLLBACK, SAVEPOINT and SET TRANSACTION commands to
tontrol transactions

CoMMmT - COMMIT command to make permanent changes to the database during the current
saction,

a rollback is performed automatically.

ROLLBACK : The ROLLBACK command is executed at the end of the current transaction and
any changes made since the initial transaction.

SAVEPOINT : The SAVEP
Saction with a unique name.

AUTOCOMMIT Set AUTOCOMMIT to automatically execute COMMIT statements.
: Se

OINT command saves the current point in the processing of a

162 | Database Management System

SET TRANSACTION : The PL/SQL SET TRANSACTION command sets transaction
properties; Such as read-write/read access only access.

M 6.15.1. Committing a Transaction

A transaction is made permanent by issuing the SQL command COMMIT. The general syntax of
COMMIT command is :

COMMIT;
For Example 1

INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY) =
VALUES (1, 'Ramesh', 32, 'Ahmedabad’, 2000.00) ;
INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (2, 'Khilan', 25,'Delhi'. 1500.00):

INSERT INTO CUSTOMERS (ID,NAME, AGE, ADDRESS, SALARY)
VALUES (3, 'kaushik', 23,'Kota', 2000.00);

INSERT INTO CUSTOMERS (ID,NAME, AGE, ADDRESS, SALARY)
VALUES (4, 'Chaitali', 25,'Mumbai', 6500.00);

INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (5, 'hardik', 27, 'Bhopal’', 8500.00);

INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (6, 'Komal', 22, 'MP', 4500.00);
COMMIT;

Example 2
Commit Syntax

SQL>COMMIT [COMMENT "comment text"];

Commit comment is supported only for backward compatibility. A comment will come in a
future release comment.

Commit Example

SQL > BEGIN

UPDATE emp_information SET emp_dept='Web Developer’
WHERE emp_name='Saulin’;
COMMIT;

END;

/

PL-SQL | 163
P 6.15.2. Rolling Back Tran

Changes made to the databage ,
i mmand. The general Syntax of the rollback command ig -
e CRULTO SAVEpotyt: o At
When a tr:ansac_tion is aborteq due to some y
entire transaction since a comppjy ; automatica| v
the following statement ¢, Tollback) the chap y r(')
ROLLBACK . e

Sactiong

ithout COMMIT can be undone using the ROLLBACK

Example 2
ROLLBACK Syntay

SQL>ROLLBACK [To SAVEPOINT nawg .

ROLLBACK Example

SQL>DECLARE

emp_1id emp.empno%TYPE;
BEGIN

SAVEPOINT dup_found;
UPDATE emp SET eno=1

WHERE empname="'Forpg ross'
EXCEPTION

WHEN DUP_VAL_ON_INDEX THEN

ROLLBACK T0 dup_found:
END;

/

Above example statement is exception raised because eno=
exception rise and rollback to the dup_found savepoint named.

N 6.15.3. Savepoints

1 is already so DUP_ON INDEX

Savepoints are like markers that help to break long transactions into smaller units by
some checkpoints. By setting a savepoint within a long transaction, you can roll back to
if necessary. This is done by issuing the SAVEPOINT command.

The general syntax for the SAVEPOINT command is -

SAVEPOINT < savepoint_name >:

setting
a checkpoint

164 | Database Management System

For example

S o e

INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (7, 'Rajnish', 27, 'HP', 9500.00);

INSERT INTO CUSTOMERS (ID, NAME, AGE, ADDRESS, SALARY)
VALUES (8 'Riddhi', 21, 'WB', 4500,00);

SAVEPOINT savi;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000;

ROLLBACK TO savl;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000

WHERE 1D = 7;

UPDATE CUSTOMERS

SET SALARY = SALARY + 1000

WHERE ID = 8;

COMMIT;

S -—-

ROLLBACK TO savl : This statement rolls back all the changes up to the point where you
marked the save point savel. After that, the new changes you made will take effect.

Example 2
SAVEPOINT Syntax

SQL>SAVEPOINT SAVEPOINT_NAME ;

SAVEPOINT Example

SQL>DECLARE

emp_id emp.empno%TYPE;
BEGIN

SAVEPOINT dup_found;
UPDATE emp SET eno=1
WHERE empname = 'Forbs ross’
EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN

ROLLBACK TO dup_found;
END;

/

B 6.15.4. Automatic Transaction Control

You can set the AUTOCOMMIT environment variable to execute automatically whenever an
INSERT, UPDATE or DELETE command is executed as follows :

PL-saL | 165
SET AUTOCOMMIT ON:
You can turn off aytq commit py, £
SET AUTOCOMNIT oy, "*i"8 the following comman -
Set Transaction
SET TRANSACTION state

3 X ment g |
also assign transaction pg used to set transaction are read-only or both read write. You
can me,) 4

F
|
|
|
l

saL>SET TRANSACTION [READ ONLY o
[NAME 'transaction_name-]; WRITE)
Set transaction name usin ¢

: g the SET
S action. TRANSACTION [..] NAME statement before you start the
SET TRANSACTION Exampje

SQL>SET TRANSACTION READ WRITE NAME "tran_exp' .

6.16. PLISQL CONTRQL STATEMENTS

PL/SQL supports conditio
(C+t, Java etc.

PL/SQL IF Statements
1. IF-THEN Statement
Syntax

nal . :
Statements and lterations of other Programming languages like

IF condition
THEN
Statement;
END IF;

This syntax is used when the user needs to execute the statement only when the condition is
true.

2. IF-THEN-ELSE Statement
Syntax
IF condition
THEN
[Statement to execute when condition is TRUE]
ELSE

[Statement to execute when condition is FALSE]
END TF;

RO TIRMOIOTUA T

noiassuer’ 102

woraanis UOITOAZVAS

rage sy (1gi2es b i.'~t» \

ﬁo execute when conditionl is TRUE
IF condition2 bl
~ Statements to execute when condition2 is TRUE

. ENDIF;
~ This syntax is used to execute a set of statements if condition 1 is TRUE or a different set of
A statements if condition 1 is FALSE. :

4. IF-THEN-ELSE-IF-ELSE Statement
”I" " IF condition1

Statements to execute when condition] is TRUE

ELSIF Condition2

THEN

Statements to execute when condition2 is TRUE

ELSE

Statement to execute when both condition1 and condition2 are FALSE
it fivii!, ENDIF;

This syntax is used to execute a set of statements when condition 1 is true, when condition 2
is TRUE, or a third set of statements when both condition 1 and condition 2 are FALSE.

- Letstake an example to understand the IF-THEN statement.

Example
DECLARE
~ a number(3);+200;

' condition is true then print the following

PL-SQL | 167
-line('a
ELSE ' less than 19
dblS-OUtPUt-Dut_ltne(-a
ENDIF; \ less than 19)
dbms_output PU_Line(-,
END; et il WP
Output
a is not less than 10
value of a s . 200
6.17. PLISOL CASE STATEMENT
The PL/SQL CASE g t :
aselector. A selector can baee%:nvear;tial:)rl?ldes th(? facility to €xecute a sequence of statements based on
Syntayx i f“nCtIOH, Or an expression.
CASE [EXDPession]
WHEN

conditiony THEN resulty
condition? THEN result2

WHEN condition p THEN result_n
ELSE result
END;
Example
DECLARE
grade char(l):='C';
BEGIN
CASE grade
when 'A' then dbms _output .
when 'B' then dbms_output.
when 'C' then dbms_output.
when 'D' then dbms _output.
else dbms_output.put_line(‘Failed')
END CASE;
END .
/
Output .

Second class

put_line('Distinction‘);
Put_line('First class').
put_line('Second class');
put_line('Pass class'):

168 | Database Management System

6.18. PL/SQL LOOP

% Loops are iterative control statements.
@ They are used to repeat one or more statements for a defined number of times.
Syntax
LooP
Sequence of statements;
END LOOP;
The four types of loops are:

1. PL/SQL Exit Loop
% It is used to execute the statement at least once before the loop is terminated.

% The loop must have an EXIT condition, otherwise the loop will get into an infinite
number of iterations.
Syntax
LOOP
Statements:
EXIT;
[or EXIT WHEN condition:]
END LOOP;
Lets take an example to understand Exit loop.
Example
DECLARE
I NUMBER:=1;
BEGIN
LOoOP
EXIT WHENi>5;
dbms_output.put_line(i):
i:=1+1:
END LOOP;
END;
Output:
1

N BTW N

- \ PL-sQL | 169
2. PL/sAL WHILE Lqq,

WHILE [condition]
| Loop StatementS:
| END LOOP,

Example

| DECLARE

3 U INTEGER. =,
BEGIN

WHILE i<=5 Loop
dbms_output.put_line(i);
Li=ieg,

END Loop.

END;

Output.

D W N =

5
3. PL/SQL FOR Loop

It is used to €xecute a certain number

of statements multiple times.
It propagates between the start and end integer valyes.
Syntay

FOR counter IN initial_value .
LooP statements;

END LOOP:

Example

BEGIN

FOR k IN 1..5 LooP
dbms_output.put_line(k)

END LoOOP;

END;

. final_valye LoopP

)

170 | Database Management System

Output :

D WN -

5
4. PL/SQL GOTO Statement

In PL/SQL, the GOTO statement enables you to achieve an unconditional jump flr;[),l;‘s thf
GOTO to a specified executable statement label in the same subprogram as the Q

block.
Syntax
(I) GOTO label_name;
(II) GOTO label_name;

........

<<label_name>>

Statement;
In PL/SQL, the GOTO statement enables you to achieve an unconditional jump from the GOTO

to a specified executable statement label in the same subprogram as the PL/SQL block.
Lets take an example to understand how to use GOTO statement.

Example
DECLARE
a number(2):=50;
BEGIN
<<loopstart>>
-- while loop execution
WHILE a <60LOOP
dbms_output.put_line ('value of a:' || a);
a:=a + 1;
IF a=55 THEN
a:=a+l;
GOTO loopstart:
END IF;
END LOOP;
END;

/

PL-sQL | 171

of a : 59
ofa:51
0fa:52
of a : 53
of a : 54
of a . 55
of a : 56
of a . 57
of a : 58
of a : 59

619. GRANTIREVOKE ppyy

LEGES
You can GRANT ang REV L i
B e i ey pr?\}i(ll: [;:vnleges On various database objects in Oracle. We will first
functions and procedures ip Oracle, o tables and.then "o 1o grant and revoke PeiaRRgs on
6.19.1. Grant Privileges on Table
Can be Insert, Update, Delete,

References, Alter Index, or any combination of Al

The syntax for granting privile

£€S on a table in Oracle is—
GRANT privileges on object t

0 user;
Privileges
To assign a privilege can be any of the following
| Privilege | Description
SELECT Mon the table.
INSERT Ability to perform INSERT statements on the table.
UPDATE Ability to perform UPDATE statements on the table
DELETE Ability to perform DELETE statements on the table
REFERENCES Ability to create a constraint that refers to the table.
ALTER Ability to perform ALTER TABLE statements to change the table
definition ~
INDEX Ability to create an index on the table with the create index statement
ALL All privileges on table.
Object

Datab is th e of the object to which you are granting the privilege. In the case of
atabase is the nam - *
granting privileges to a table, this would be the table nam

172 | Database Management System

User
Name of the user to whom these privileges will be granted.

Some Examples of Granting Privileges on Tables in Oracle
For example, to grant SELECT, INSERT, UPDATE, and DELETE privileges on a table named
supplier to a user named dbms, the following GRANT statement would run:
GRANT SELECT, INSERT, UPDATE, ON suppliers To dbms;
You can also use the ALL keyword for all permissions for the user named dbms.
GRANT ALL ON suppliers To dbms;
If you want to provide only SELECT access to the table for all users, you can assign the
privilege to the public keyword. For example-
GRANT SELECT ON SUPPLIER TO PUBLIC;

B 6.19.2. Revoke Privileges on Table
Once you have granted privileges, you have to revoke all these privileges. To do this, one can
run the revoke command. Can revoke SELECT, INSERT, UPDATE, DELETE, REFERENCES,

ALTER, INDEX or any combination of ALL.
Syntax
The syntax for altering privileges on a table in Oracle is—
Revoke privileges on object FROM user;

Privileges
Privilege to Revoke. It can be any of the following :
Privilege Description
SELECT Ability to perform SELECT statements on the table.
I INSERT Ability to perform INSERT statements on the table.
[UPDATE Ability to perform UPDATE statements on the table.
[DELETE Ability to perform DELETE statements on the table.
REFERENCES | Ability to create a constraint that refers to the table.
ALTER Ability to perform ALTER TABLE statements to change the table
definition.
INDEX Ability to create an index on the table with the create index statement.
ALL All privileges on table.
Object

T.he name of the database object for which you are revoking any privileges. In the case of
revoking privileges on a table, this will be the table name.

~ PL-sQL| 173
ysers

as t! 1vi
hese Privileges wily be revoked.
Let’s look at some €Xamp|eg

: of ho b
For example, if yoy Wanteq tq rev;:(tobrevoke Privileges on a table in Oracle.
e Visid
ysername anderson, yoy would ryp, the fOIIOEiI;,ETE Privileges on a table named SUPPLIER from the
REVOKE DELETE ON sypp),zpr TS
If you want to revoke)y Dl ANDERSON .
keyword as follows : e

Al PLIER table and you wanted to
stat
REVOKE ALL ON SUPPLIER FROM PUBL?C i
g 6.19.3 Gr:nt Privileges on Functlons/Procedures
When working with tasks and
B oo Processes, you can provide users with the ability to perform these
Syntax

GRANT EXECUTE ON object TO yus

er;
Execute

Ability to compile functions/procedures. Ability to directly execute a function/procedure.
Object

The name of the database object to which you are granting privileges. In case of granting
Execute privilege to a function or procedure, it will be the function name or procedure name.
User

The name of the user to whom the specific privileges will be granted.
Example

Let us look at some examples of granting EXECUTE privileges on a function or procedure in
Oracle.

For example, if you had a function named Find_Value and you wanted to grant EXECUTE
access to a user named smithj, you would run the following GRANT statement :

GRANT EXECUTE ON Find_Value TO smithj;

If you want to provide all users with the ability to perform bl i
following statement—

GRANT EXECUTE ON Find_Value To public:

N 6.19.4. Revoke Privileges on Functions/Procedures

2 X b
XECUTE privilege on a function, you may require these privileges from the
Once you have E e
user. To do this, you can execute a REVOKE comm

e s

174 | Database Management System

Syntax
The syntax to change privileges on a function or procedure in Oracle is :
REVOKE EXECUTE ON object FROM user;

EXECUTE .

Ability to compile functions/procedures. Ability to directly execute a function/procedure.

Object '

The name of the database object that you are revoking privileges for. In tl'w case of revoking
EXECUTE privileges on a function or procedure, it will be the name of the function or procedure.

User

Name of the user whose EXECUTE privileges will be revoked.

Example

Let us look at some examples of revoking EXECUTE privileges on a function or procedure in
Oracle.

If you want to revoke EXECUTE privileges on a function from the user named anderson, you
would run the following REVOKE statement
REVOKE execute ON Find_Value FROM anderson:

If you had granted EXECUTE privileges to PUBLIC (all users) on a function called Find_Value

and you wanted to revoke these EXECUTE privileges, you can run the following REVOKE
statement :

REVOKE EXECUTE On Find_Value FROM public:

6.20. DIFFERENCE BETWEEN IMPLICIT AND EXPLICIT CURSORS

Implicit Cursors Explicit Cursors
¢ Implicit cursors are automatically % Explicit cursors need to be defined
created when select statements are explicitly by the user by providing a
executed. name.
@ They are capable of fetching a single % Explicit cursors can fetch multiple

row at a time, rows.

¢ They are more vulnerable to errors <>

They are less vulnerable to errors
such as Data errors, etc.

(Data errors etc.)

@ Provides less programmatic control to % User/Programmer has the entire
the users. control.
< Implicit cursors are less efficient. % Comparative to Implicit cursors,

explicit cursors are more efficient.

| PL-saL | 175
' pEGIN - # Explicit cursors are defined as :
DECLARE
LECT attr_name fropy, tab]
g%NDITION; END C-Name where CURSOR cur name IS

SELECT attr_name from table_name
Where CON DITION;
BEGIN

icit cursors requj
::16‘1)1‘11;:)1 for storage p?l‘::(:"se-anonymous buffer
Cursor attributes use prefix ¢«
structure for implicit cursors
SQLY% attr_ name

Few implicit cursors attributes are -
SQL%FOUND, SQL%NOTF(
SQL%ROWCOUNT

\

Explicit cursors use user-

for storage purpose

SQL. S - R

' tructure for explicit cursors:
Cur-name?, attr_name

defined memory space

Few explicit cursors are : cur_name% FOUND,
Cur_name% NOTF
UND, 0 OUND,

Cur_name?%, ROWCOUNT

VoI ae R
8 : ‘
%)

S
a
o
ad
S
(@}
a
g
[¢)
~

=5
b i
-
(¢
G
- g
(¢
a-
()
7
a
=}
o
a
g
a

tween Implicit and Explicit cursors,

What are Grant and Revoke privileges? Write with examples.

12. Write about Case statement and Control statement of PL/SQL.

13. What is transactions in PL/SQL? Explain COMMIT, ROLLBACK and SAVEPOINT
commands with correct examples.

14, What is meant by built-in function in PL/SQL? How many types are there and how are they
used in the program?

15.

What are the types of tri

ggers? What are the uses, advantages and disadvantages of triggers?
Write point wise.

Q

7.1. INTRODUCTION

NoSQL databases are built for s
modern applications. NoSQL databases
and large-scale performance.

NoSQL database is a non-relati
schema. It avoids JOIN, and is easy to
distributed data store for the huge data

web apps. For example, companies lik
every day.

pecific data models and have flexible schemas for building
are widely known for their ease of development, functionality,

onal data management system that does not require a fixed
scale. The major purpose of using NoSQL databases is for the
warehousing needs. NoSQL is used for Big Data and real-time
e Twitter, Facebook, and Google collect terabytes of user data

NoSQL databases are called “‘not only SQL * or ““Not SQL** in detail. Although a better term
would be ‘““NoREL’’. Karl Strozz introduced the NoSQL concept in 1998.

Traditional RDBMS uses SQL Syntax to store and retrieve data for the future. Instead, a NoSQL

database system covers a wide range of database technologies, which can store structured,
semi-structured, unstructured and polymorphic data.

Relational

SQL Database
Column-Family Graph Document Key-Value
T . ©
ENEEEEE) \Q N key value
Llidtrit {)
o | 'i’ & ®Q Veue
saeanna LGS
1[l . .” ‘ . . value

‘ O . O key value

Fig. 7.1—No SQL Database

The concept of NoSQL databases became popular with Internet giants such as Google,

Facebook, Amazon, etc., who deal with huge amounts of data. When you use RDBMS for massive
data then the system response time slows down.

NO-saL | 177

S¢an up gy System by upgrading our existing hardware. This
The alternative to thjg Problen
] 3 em
he Joad increases. This method g knowsnto

qi‘S“’ibUte the database load over multiple hosts whenever
aS “scalping out,

SCa|e-Up

(vertical scaling) - Scale-Out

(horizontal scaling) :
L

> g

N More RAM

K"\-:""»L

0 N e .
S’ 7/ E L\\t, More Cpy i
N N T :

7 More ‘:iDD

(kL(o
OO
OO

!

Commodity
Hardware

Fig. 7.2~Sca|e-up and Scale-out

NoSQL database ig non-

. relatio
designed with web application

-rational, so it can scale out better than relational databases, as they are
$ 1N mind.

Ny modern applications such as mobile, web and
; ble high-performance and highly functional databases to provide
great user experience.
% Flexible : NoSQL databases typically provide fle
more iterativ

% Scalability : NoSQL databases are typically designed to scale using a distributed cluster
of hardware, rather than scaling by adding expensive and robust servers. Some cloud
providers handle these operations b

ehind-the-scenes as a fully managed service.
< High performance : NoSQL databases are o

ptimized for specific data models and access
patterns, enabling higher performance than trying to accomplish the same functionality
with relational databases.

< Highly functional : NoSQL databases provide functional APIs and data types that are
purpose-built for each of their respective data models.

N 7.1.1. When use NoSQL? .
#® When ACID support is not required.

@ When the traditional RDBMS model is not sufficient.
ires a flexible schema. _ ‘
: Igztr:lsttrt;?:nrse (:rig Validations logic does not need to be implemented in the database.
< Logging trom distributed sources.
<&

It should be used to store temporary data such as shopping cart, wishlist and session data.
t shou eu

i Works?
n-relational) Database : 43
3 . e NOSQall:ie(t';c:)f data models to access and manalge dz;tatxé;l‘chls ggeﬂ:‘(?Sl : dzstz
IS § !?iOSSL datt'ab'asej ?:: :p;;lications that require large data volume, low latency,
Pecifically optimize

P i

B oL

178 | Database Management System

models, which can be achieved by reducing or removing some of the data consistency restrictions of
other databases is done.

M Brief History of NoSQL Databases :

i’ 1998 Carlo Strozzi coined the term NoSQL for his lightweight, open-source relational
database.

Facebook’s open source Cassandra project.
2009 The term NoSQL was reintroduced.

7.2. FEATURES OF NoSOL

B 7.2.1. Non-relational

¢ 2000 Graph database Neo4j launched.

¢ 2004 Google Big Table launched.

¢ 2005 Couch DB launched.

@ 2007 Research paper on Amazon Dynamo released.
< 2008

<«

€ NoSQL databases never follow the relational model.
€ Never fix flat or provide table with records.
¢ Self contained BLOB or set-work with.
¢ Object-relational mapping and data normalization are not required.
@ There are no complexed features like query language, query planners, referential integrity
joins, ACID.
)
RDBMS : : NoSQL DB :
1
1
EXpicit 1
Senema : Item [Price] -
- Item [Discount]
1
SELECT Name, Age :
FROM Customers :
:
!
I
1
I
1
I
I

— Py
Fig. 7.3—RDBMS and NoSQL DB
W 7.2.2. Schema-free

% NoSQL databases are either schema-less or the schema is relaxed.
% The schema of the data does not require any type definition.
% Offers heterogeneous structures of data in the same domain.

B 7.2.3. Simple API

% Easy to use interface for storage and query of available data.
% APIs allow low-level data manipulation and selection methods.
% Text-based protocol mostly used HTTP REST with JSON.

¢ Mostly NoSQL baseq
¢ Web-enableg datab

l 4 \J
i ‘am,ua.g,e O standar ig used,
g 7.2.4. Distributed

< Many NoSQL g
Provides auto-g

& . C exeeuteq iy a distributed form,
¢ Often the ACID c':.‘iél)'ld fml-ovef Capabilities, |
@ Mostly any sype,, ¢an be Climinated for
<
<

NO-SQL | 179

ing ag lnlemel-cnublcd services,
Atabageg

: ONOUS rapling,:
HDFS Signaling betwe S Teplication a

T Ous multi-master replication, peer-to-peer,
iy [N distribygeq nodes p g

€ only Cventug) Consisten .
Shared Nothing Arc o

hitectyre
®eee@E |

]]

i D O@: @il i @ @) @

\]

Yol Mmmg |) (] (]]

s s e l

S] S S | -

]

e.g‘a“rg(rjag:r??ry" Shared Memory : Shared Memory
= g e.g. “Oracle RAC" e.g. “NoSQL”

a

_ (b) ©
Fig. 7.4~Distributed database

- 7.3 TYPES OF NoSQL DATABASES

NoSQL databases are
Graph-based, and Document-orienteq. Ea
limitations. None of the above database is
database based on their product requirement

¢ Key-value Pair Based
% Column-oriented Graph
¢ Graph based
¢ Document-oriented

scalability and throughput,
Synchron

mainly classified into four types :

- Key-value pair, Column-oriented,
ch Category has its

OWN unique characteristics and
better for al| types of problems. Users should select the

LA

|
. |

-
|
|
|
|

= - =
. -

Example
Neodd, IntoGrid, infinite
Graph, Flock DR

|
|
|

(@) (b) - e
a

180 | Database Management System

W 731, Key Value Pair Based

ata is stored in key value pairs. It is designed in such a way to handle a lot of data and g,
load.

Key-value pair storage databases store data in the form of a hash table; Where eacp, key o
unique, and value can be a JSON, BLOB (Binary Large Objects), String, etc.

ple, a key-value pair might have a key like ‘‘website’” associated with a value iy,

Key-value : Key-value databases are hi
that other types of datab

For exam
R}

XY

guru

ghly partitionable and allow horizontal scaling ¢ Scaleg
ases cannot achieve. In use cases such as gaming, ad tech, and o, the
key-value data mode] is particularly well suited. Amazon DynamoDB is designed to provid
single-digit millisecon

VIde Consigten
d latency for any type of workload. This consistent performance is
the Snapchat Stories fe

€ 15 2 big part o
ature, which includes Snapchat’s largest storage workload, which has moveq y,
DynamoDB.
Key Value
Name Joe Bloggs
Age 42
Occupation Stunt Double
Height 175 cm
| Weight 77 kg
It is one of the simplest NoSQL database exam
collections, dictionaries, a

ples. Such NoSQL databases are used ag
ssociative arrays, etc. Key v
schema-less data. They work

alue stores help the developer to store
best for shopping cart contents.
Redis, Dynamo,

Riak are examples of some important NoSQL value data store databases. They
are all based on Amazon’s Dynamo Paper.

ately. The values of a single column database are stored contiguously
Column Family
Row Key Column Name
Key Ke Ke
Value | Value Value
Column Name
Key Key Ke
Value Value Value
They deliver high

performance on aggregate queries like SUM, COUNT, AVG, MIN etc., as the
n a single column.

Column-based NoSQL databases are widely used to manage data warehouses, business
intelligence, CRM, library card catalogs.

data is readily available i

|
HBase, Cassandra, Hypertable are examples of column based databases in NoSQL query.

NO-saL | 181
m 7.3.3. Document-Oriented

_ Document-oriengeq NoSQL stores and retrieves data in a DB as a key value s ipebl
1s stored as g d0cument. he d
understood by the DB 5

OCument is stored in JSON or XML formats, The value is
nd can be queried.

N e |
Data Data

"prop1": data,
Data Data Data Bk "prop2": data, "prop1*: data, i,
Data Data Data -]P’°P4 :data prop2":data, {

"prop3": data, "prop1”: data,
"prop4”: data "prop2”: data,
"prop3": data,
‘prop4”: data

}

fferent structures.
pleDB, CouchDB, Mong
ginated from DBMS syste
Documents : In application code, data

is often represented as objects or JSON-like documents
e it is an efficient and intuitive data mode]

el for developers. Document databases
base using th

Amazon Sim
documents which ori

oDB, Riak, Lotus Notes, MongoDB are popular
ms.

becaus
develo

make it easy for
PETS to store and query data in the data

¢ same document mode] format that they use

ible and iterative development.
B 7.3.4. Graph-Based

A graph type of database stores entities as well as th
Entity is stored as node edges relations_hip as edge. An ed
Each node and edge has a unique identifier.

Compared to a relational database w
multi-relational in nature. traversin
N0 need to calculate them.

¢ relationships between those entities.
ge establishes a relationship between nodes.

here tables are loosely connected, a graph d

atabase 1s
g relation is fast, because they are already captured DB

and there is

Graph base database is mostly used for social networks, logistics, spatial data.

Fig. 7.7 : Graph Based DB

Graph : Ncod), Infinite Graph, OrientDB, FlockDB are some of the popular graph-based
databases. The purpose of a graph database is to make it easier to build and run applications that work
with highly connected datasets. Graph databases are particularly useful in social networks,
recommendation engines, fraud detection, and knowledge graphs. Amazon Neptune is a fully managed
graph database service. Neptune supports both the property graph model and the Resource Description

Framework (RDF), providing a choice of two graph APls — TinterPop and RDF/SPRQL. Popular
graph databases include Neo4)J and Giraph.

7.4. QUERY MECHANISM TOOLS FOR NoSOL

The most common data retrieval mechanism is the REST-based retrieval of a value with a GET
resource based on its key/id.

Document store databases offer more difficult queries, because they interpret the value in a
value-value pair. For example, CouchDB allows views to be defined with MapReduce.

The CAP theorem is also called Brewer's theorem. This suggests that it is impossible for a
distributed data store to offer more than two of the three guarantees :

1. Consistency 3.

2. Availability

Partition tolerance

Consistency : The data must be persistent even after the execution of the operation. This means
that once data has been written, any future read requests must have that data. For example, after
updating the status of an order, all clients should be able to see the same data.

Availability : The database should always be available and responsive. There should be no
downtime.

Partition Tolerance : Partition tolerance means that the system should continue to function
even if communication between servers is not stable. For example, servers may be divided into
multiple clusters, which cannot communicate with each other. Here, if part of the database is
unavailable, the other parts are always unaffected.

The term ““eventual consistency’’ refers to copies of data on multiple machines to perform high
availability and scalability. Thus, changes made to any data item on one machine have to be
propagated to other replicates.

Data replication ma
others will be over time. T

M Base : B asically A vailable, Soft state

&

K2
o

@

NO-saL | 183

l)xl not be instantaneous,
€€ copies may be mutual, but over time, they become consistent.

Eventual consistency

ACID BASE<._

; vsed in many
Atomicity . Basically NoSaL
i Available
! 1
! i sysrems
i ,
|~ Consistency = Soft State
= Isolation & Even?ually
' Consistent

Durability

Fig. 7.8—ACID vs BASE

Basically, available means DB is available all the time as per CAP theorem.

Soft state also means without input; System state can change.
Eventual consistency means that the system will become consistent over time.

7.5. ADVANTAGES OF NoSOL

<>
<>

%,
..0

<>
<>

KD
%

00

*

LRI

o

Can be used as primary or analytical data source.

Big data capability.

There is no single point of failure.

Easy replication.

There is no need for separate caching layer.

It provides fast performance and horizontal scalability.

Can handle structured, semi-structured and unstructured data with similar effect.
Object-oriented programming, which is easy to use and flexible.

NoSQL databases do not require a dedicated high-performance server.

Key developer dedicates languages and platforms.

Simpler to implement than using an RDBMS.

It can serve as the primary data source for online applications.

Handles big data that manages data velocity, volume, quantity and complexity.
Excels at distributed database and multi-data center operations.

Eliminates the need for a specific caching layer to store data.

Provides flexible schema design; Which can be easily replaced without downtime
service disruption.

as some copies will be updated immediately, while

or

2

184 | Database Management System

7.6. DISADVANTAGES OF NoSQL

IR R

There is no standardization rule.
Has limited query capability.
RDBMS databases are comparatively more mature. o

It does not offer any traditional database capabilities; Like maintaining stability when

multiple transactions are done simultaneously.

S @

When the amount of data increases, it is difficult to maintain unique values, as keys
become difficult.

Doesn't work with relational data either.
Difficult to learn for new developers.
Open source options are not so popular for enterprises.

7.7. DIFFERENCE BETWEEN SQL AND NoSOL

Parameter

SQL

NoSQL

Definition

Design for

Query Language

Type

Schema
Ability to scale
Examples

Best suited for

Hierarchical data storage

Variations

SQL database is mainly called
RDBMS or relational database.

Traditional RDBMS uses SQL
syntax and queries to retrieve data
for analysis and further
information. They are used for
OLAP systems.

Structured Query Language
(SQL)

Structured Query Language
(SQL)

SQL database has a predefined
schema.

SQL Database is
scalable.

vertically
Oracle, Postgres and MS-SQL.

Useful and good for complex
queries.

SQL database is not suitable for
storing hierarchical data.

Only one type of sql database is
available with minor variations.

NoSQL database is mainly called
Non-relational or distributed database.

NoSQL database systems include a
variety of database technologies.
These databases were developed for
the development of modemn
applications.

There is no declarative query
language.

NoSQL databases can be document
based, key-value pair, graph
databases.

NoSQL databases use dynamic
schemas for unstructured data.

NoSQL database is

horizontally
scalable.

MongoDB, Redis, Neo4j, Cassandra,
Hbase.

Not useful for complex queries.

More suitable for Hierarchical data

store as it supports key-value pair
method.

Many different types including
key-value stores, document databases,
and graph databases.

Development Year

Open-source

Consistency

Best used for
Storage type
Best features

Top companies using

ACID vs. BASE model

In the 19705

A mix of open-source (Postgres

and MySQL) and commercial
(Oracle Database).

It should be confi

: gured for strong
Cconsistency.

RDBMS is the right choice for
solving database ACID problems.

Highly Available Storage (SAN
RAID etc.) Moo ’

Cross-platform support, secure
and free.

Hootsuite, Circle, Gauges.

ACID (Atomicity, Consistency,

Isolation and Durability) is a
standard for RDBMS.

NO-sQL | 185

In the 2000s.

Open-source

It depends on the DBMS, as some
provide strong consistency like
MongoDB, while others only provide
eventual consistency like Cassandra.

NoSQL is best used to solve problems
such as data availability.

Commodity Drive Storage (Standard
HDDs, JBOD)

Easy to use, high performance and
flexible tool.

Airbnb, Uber, Kickstarter.

Base (natively available, soft state,
eventually consistent) is a model of
many NoSQL systems.

EXERCISE

What is No-SQL?

When do you use NoSQL and how does it work?

|
I
i

Explain the features of NoSQL.

What is NO-SQL database? Explain its types in detail.
Explain the advantages of NoSQL.

State the dis-advantages of NO-SQL.

State the difference between SQL and NoSQL.

bt
2.
-
4.
5.
6.
£

i ddr e

e the users so that the

granted to Y can perform the tasks re uired for thej
grant pnv1l§g§ to a user only when he absolutely needs th(é privilegetl:o perform his
rvileges unnecessarily can lead to security vulnerabilities,
: Database security 1 tl}e technology that protects and secures a database from intentional or
acc1d€.:nta-l th'reats. Security is concerned with Preventing damage not only to the data residing in an
organization's database, but also to other parts of the system, which may ultimately affect the database
1 es hardware p

. arts, software parts, human resources, and
_ ¥y requires appropriate controls, which differ in a s ecific mission an
purpose for the system. g ;

; : Privileges ar
jobs. You should
task. Excessive granting of p

We consider database securi
Theft and fraudulent

Loss of confidentiality or secrecy

ty in terms of the following :
2
<>
% Loss of data privacy
<>
<

Loss of data integrity

Loss of availability of data
These listed situations re

present most of the areas in which an
mitigating the risk that data los

organization should focus on
s or damage is likely to occur within a d

atabase.

8.2. DATABASE SECURITY AND THREATS

Data security is an essential aspect of any database system. It is especially important in
distributed systems because of the lar

ge number of users, propagated and replicated data, multiple
sites, and distributed control.

Security | 187

] 8.2.1. Threats in a database

& Availa.bility loss : Refers to the unavailability of database objects by legitimate users.
< Integrity loss : Integri

database b g ty loss'o.ccurs when unacceptable opgrations are pgrforrped on a
atabase by mlstake or maliciously. This can happen while data creation, insertion,
update or fleletlon. This results in corrupted data leading to incorrect decisions.
e Co“ﬁdenhalﬁty loss : Privacy loss occurs due to unauthorized or unintentional disclosure
of confidential information. This can result in illegal actions, security threats and loss in
public confidence, :

W 8.2.2. Measures of Control

The control measures can be

divided into the following categories -
< Access control s " :

Access control includes security mechanisms in a database management

System to prevent unauthorized access, User can access the database only through valid
user accounts after clearing the logging process. Each user account is password protected.

< Flow control : Distributed systems involve multiple data flows from one site to another
and within a site. Flow control prevents data from being transferred in such a way that it
can be acqessed by unauthorized agents. It also defines security classes for data as well
as transactions.

< Data engryption : Data encryption refers to coding data when sensitive data is to be
communicated over

r public channels. Even if an unauthorized agent accesses the data, he
cannot understand it because it is in an incomprehensible format.

8.3. AUTHENTICATION AND AUTHORIZATION

Authentication and Authorization are two terms, which are often used interchangeably in the tech
world. However, both these words are quite different with completely different concepts and
meanings.

B 8.3.1. Authentication
“The process or action of verifying the identity of a user or process.”’
Authentication is the process of proving one’s identity before trying to gain access to a resource.
We see Authentication everywhere in our day to day life such as :
1. Passports 3. Aadhaar Cards etc.
2. ID Cards
Authentication determines the identity of the user before sensitive information is disclosed. This
is very important for systems or interfaces where the user’s priority is to protect confidential
information. In this process, the user provides an identity about the personal identity (him) or the
identity of the entity.

The credential or claim can be a username, password, fingerprint, etc. Problem_s l.ike
authentication and non-repudiation are handled at the application layer. A disabled authentication
mechanism can significantly affect the availability of the service.

Before determining the privileges and access rights of the users, it is necessary to identify them.
You need to know who the user is so that you can audit the actions taken by him on the data. There are
different ways to authenticate a user before being allowed to create a database session.

In database authentication, you can define users in such a way that the database can perform bolt‘h
identification and authentication of users. In external authentication, you can completely define the

b

188 | Database Management System

users whether the authentication should be performed by the operating system or network service. You

can define users in such a way that they are authenticated by secure sockcl:)t layer-SSL. An enterprise
directory can be used for enterprise users to authorize their access to a database.

Passwords play an important role in authentication. To prevent unauthorized use of a database,

the user should provide the correct password while establishing a conpecti:p to :il:: ;d(:itczg)::g‘.:tl?ot:\l::
way, using the information stored in the database, users can be authenticated in or iy g g
database. You know that passwords are assigned at the same time users arc created.

store a user’s password in encrypted format in a data dictionary and users can change their password at
any time.

B 8.3.2. Authorization

“Official permission for something to happen, or the act of giving someone official permission for
something.”

\as 5 A e
The authorization is the process of providing or granting permissions to a user to access a protected
resource.

Some examples of authorization are :

1. Granting individual access to a specific location in a building.

2. Allowing a user to access specific parts of a website etc.

Authorization is the permission granted to a user, program or process to access an object or a set

of objects. The type of data access granted to a user can be read-only or read and write. There are the
following four forms of authorization in the field of database :

() Read authorization : This authorization provides permission to read, but the data
cannot be modified.

(i) Insert authorization : This authorization provides permission to insert new data,
existing data cannot be modified.

(iiij) Update authorization : It provides permission to modify the authorization data, but the
data cannot be deleted.

(iv) Delete authorization : It provides permission to delete authorization data.

There are the follov:ing four forms of authorization to modify the database schema :
(i) Index authorization : It provides permission to create and delete authorization indices.
(ii) Resource authorization This authorization provides permission to create new
relations.
(iii) Alteration authorization : This authorization provides permission to create and delete
attributes in a relation.
(iv) Drop authorization : It provides permission to delete authorization relations.
Authorization is a privilege granted by the database administrator. There are different permissions
for authorization available :
% Primary permission : It is given to the public and directly to the users.
% Secondary permission : It is given to groups and automatically awarded to a user if he is
a member of the group.
% Public permission : It is publicly available to all users.
% Context sensitive permission : It deals with sensitive material and is given only to a
select few users.

Categories of authorization that can be granted to users :

Security | 189
& tSh);:te;nt }a]ldr.nini_strator ¢ It is the highest administrative authority for a user. Users with
uthorization can also execute certain database administrator commands; Such as
restoring or upgrading a database.
<& Sys.tem control This is the highest controlling authority for a user. It allows
maintenance operatj

. ons on the database, but not direct access to the data.
< System maintenance :

n TR This is the lowest level of <vstem control authority. This allows
g o Maintain the c‘iatabase, but within the datal manager instance.
ystem monitor : Using this authorization, the u: can monitor the database and take
snapshots of it.

8.4. AUTHORIZATION ON vIEWS

_Authorlzatxop .can be granted on views to the user without giving any authorization on any used
relations. The ability to hide d 3

Rl devel 5 . y need for their jobs. Using a combination of
re 3:1 ional-level security and view-level security can limit user access to exactly the data the user
needs.

Let’s assume that the bank cler
authorized to see specific loan info
is allowed to the cust loan view,
branches in which those

k n?eds to know the names of customers at each branch, but is not
rmation. Direct access to the loan relation will be denied, but access

which contains the names of the customers and the names of the
customers have loan accounts.

The cust_loan view in SQL will be defined as follows :
CREATE VIEW cust loan AS

branch_name, customer name
FROM borrower, loan

WHERE borrower, loan_number = loan.loan_number

The clerk is authorized to see the result of the following query :

SELECT*FROM cust_loan

When the query processor renders the results in the form of a query on the actual relations in the
database, the query about the loan taken by the borrower is received. Authorization is checked on the
clerk's query before replacing the view of query processing by definition of view.

8.5. SECURITY RISK

The issue of database security is related to the entire organization. .The organization 'should
identify all the risk factors and weak elements related to database security and find solutions to
eliminate them. Risk factors and weak elements are different types of threats. A threa} can be any
situation, event or personnel that can affect the security of the d?tabase and the functioning of ?he
organization. A threat can arise due to some situation, evgnt or action done by a person, due to whlcl}
the organization may be harmed. This loss can be tar_lglble, loss of data, hardware damage, loss o
software, or intangible such as loss of customer goodwill etc.

190 | Database Management System

Data integrity and privacy are at risk from unauthorized users and external sources using the
network and from internal users who supply data outside the data store.

M 8.5.1. Data Tampering

Maintaining the privacy of communications is essential to ensure that the dz’ua capnyt bc wewzjr
or modified during transmission. In a distributed environment, the pos‘mbl’hty of wmmbucgnf ::g;p‘;:d E
crime by tampering with data by a malicious party, that is, by exchanging it, lncrc;scgim . ™ the
keeps moving between different sites. In data modification attack, an unaut on/’ dp;ra;{gmiu; ’
network intercepts the data while traveling, that is, changes some part of that data an St
again.

B 8.5.2. Eavesdropping and Data Theft

Data must be stored and transmitted securely, so that information cannot be slql(f{n,’(}n ’thc
Internet and in the WAN environment, public carriers and private network owners route dif] cran ;’)F:hrys
of their network through unsecured landlines, vulnerable microwave and satellite ln}k‘; or scrvcrs.t - hu,
makes the valuable data open for viewing by any interested person. In thc'LAxN cerl.ronrtn’f—']l; 2 “fi
employees of the company or organization can also see the physical data, which they dTC' mf _d '01/ :
to see. Network sniffers can be easily installed to eavesdrop network traffic. Packet sniffers can be
used to detect usernames and passwords.

M 8.5.3. Falsifying User Identities

It is relatively easy to falsify the identity of a user to access sensitive and important inAformatior! in
a distributed environment. Apart from this, cyber criminals can hijack network connections. During
the transmission of data, its route and destination > n be changed by intercepting it. Identity theft is
taking the form of a big threat in the Internet environment. By stealing user’s credit card numbers and
bank account numbers, cyber criminals can make purchases against those accounts. These cyber
criminals steal your personal data like name, e-mail address, driving license number, bank account
number, address etc. and misuse it by opening a credit account in your own name.

There is also an issue related to identity theft, non-repudiation, in which hackers can steal a
person's digital signature and misuse it using his private signing key.

B 8.5.4. Passward-Related Threats

In large systems, users are required to remember multiple passwords to access various
applications and services. For example, a developer may need to access a development application
installed on a workstation computer, access a personal computer (PC) for e-mail, or access multiple
computers connected to an intranet to test a program. Due to the compulsion to remember different
passwords, users keep their passwords on their name or the name of a person in their family or the
name of an actor or any word in the dictionary, which can be easily guessed. All these passwords are
vulnerable to dictionary attacks. Users also use such passwords which can be driven by known
passwords. Users keep writing them on a paper to remember complex passwords which an attacker can
easily find. In case of forgetting such complex passwords, it takes a lot of administrative cost and

efforts to manage them. In addition, administration of multiple user accounts and passwords consumes
a lot of time and labor.

@ 8.5.5. Unauthorized Access to Tables, Columns and Data Rows

There may be some such confidential tables in the database or confidential columns in any table,

which should not be available to all the users who are authorized to access those databases. You know
that data in a table can be protected at the column level.

Security | 191

Some data rows in a table May store confidential information that should not be available to users
who are lllllh()lll.Cl:| 0 access that table. For this, granular access control can be implemented on the
mblf-‘- Fhrough this, the conl'ldcm.iulily of the data can be maintained. For example, in a shared
environment custome

: 's should only be allowed to view their orders, while employees should be
allowed to view and modify all customer records

W 8.5.6. Lack of Accountability
If the system administrator ig not able 1o record the

users on the database, then they cannot be he

device like audit trails can be used to keep tra
stored in the database,

inforn n of the actions performed by the
ld responsible for (lic actions performed by the users. A
ck of which user performed which operations on the data

M 8.5.7. Complex User Managements

A system must support thousands of users,

. 3 : Therefore it should be scalable. Large scale
environment in which the number of

Wds, by managing their accounts and passwords,
makes your system vulnerable to error and attack. For reliable security administration of thousands of

users, you n_ccd to know \yho the users really are at all the tiers of the application. And it is difficult to
maintain this work on a single system. To successfully implement security administration for a large

number of users, users and their privileges for multiple applications and databases can be centrally
managed and industry standard directory ie active directory can be used for this,

8.6. SECURITY CONSTRAINTS

To secure the computing environment
technologies. Not all problems can be solv
issues are solved by using pro
security standards, which can

W 86.1. Confidentiality

A secure system ensures the confidentiality of the data. This means th
person (user particular) to see only the data that they have bee
communications, secure storage of sensitive data, authenticated
are many aspects of confidentiality. Access control is a method in which certain portions of a database
are hidden. For example, a clerk in the Human Resources Department may be allowed to access certain
fields of the employee table, but may not be allowed to see the full salary information of the company.

The granularity of access control is the degree to which data access can be differentiated for specific
tables, views, rows and columns of a database.

1sers is thousar

of an organization or company, we should use different
ed by a single technological solution. Most of the security
per technology. Confidentiality, integrity and availability are the basic
be ensured by using proper technology.

at it allows a particular
n given permission to see. Privacy of
users and granular access control etc.

You know that there is a clear difference between authentication, authorization and access
control. Authentication is a process by which the identity of a user is verified. When a user is
authenticated, he is verified as an authorized user of a particular application. Authornzat}on is the
Process by which the privileges of the user are ensured. Access control is the process by which access

to the user's physical data for an application is limited on the basis of its privileges. All these issues are
important in distributed systems.

W 8.6.2. Integrity

A secure system also ensures that the data stored in it is valid. Data ?ntegrity refers to the fact that
the data is protected from deletion and corruption in both the cases of being stored in the database and
being transmitted over the network. The following are the aspects of integrity :

192 | Database Management System

& System and object privileges control access to the application’s tables and system
commands, so that only authorized users can change the data. vy

& Referential integrity maintains valid relationships between data-values stored in different
tables according to defined integrity rules.

& Databases should be protected against viruses that are designed to corrupt datzf\.

& Network traffic should be protected from deletion, corruption and eavesdropping of data,

W 8.6.3. Availability
A secure system makes data available to authorized users without delay. Denial-of-service attacks
are attempts to block users from accessing the system when needed and not on time. There are many

aspects of system availability, which are as follows :

& Resistance : A secure system should be designed in such a way that it does not allow the
performance of the system to be affected. For this, using user profiles, it 'should be
defined and limited that which user can consume how many resources. In this way the
system can be protected against users who intentionally or ignorantly consume too much
memory or processor and prevent other users from performing their tasks.

% Scalability : Irrespective of the number of users and processes, the performance of the
system should be consistent and optimal. ‘

¢ Flexibility : Administrators must have adequate resources to manage the number of
users. For example, they can use a directory, such as Active Directory, for this task.

¢ Ease of use : Security implementation should not deny valid users the ability to perform
tasks.

B 8.6.4. Concurrency

A single unit of work in a database system is called a transaction. A transaction is a sequence of
multiple operations that are performed on data as a single unit of work. If all the changes made to the
data during a transaction are committed, then they are permanently stored in the database. If errors
occur in a transaction, it is aborted or rolled back and all data changes are undone.

B 8.6.5. Data Encryption

Encryption is a technique of encoding data so that only authorized users can understand the data.
But, data encryption alone is not sufficient to secure the data. To secure the data stored in a database, it
is necessary to implement access control, data integrity, encryption and auditing. You can encrypt the
data for the purpose of additional security of the data.

Most of the issues related to data security can be handled through authentication and access
control, as it can be ensured that only properly identified and authorized users can access the data. .
But, the data stored in a database cannot be prevented from accessing the database administrator, as he
has all the privileges. Similarly, preventing data stored offline from being stolen by rogue employees is
a difficult task. Therefore, sensitive data should be encrypted before storing it in the database. Credit
card nun(libers and confidential business data etc. come under sensitive information, which needs to be
encrypted.

Several industry-standard encryption algorithms have been developed to encrypt and decrypt
data. Data encryption standards have two popular encryption/decryption algorithms.

Security | 193

8.7. INTEGRITY CONSTRAINT

Integrity constraint is a set of rules.
constraint is used to protect against accid
two ways :

1. Constraints can be g
definition.

2. Constraints can be g
definition.

Database Constraints

< Primary key % Foreign key
< CHECK constraint < UNIQUE constraint
< NOT NULL constraint

B 8.7.1. Primary Key

A primary key is a column, or a
A primary key constraint is also ¢
constraint.

It is used to maintain the quality of information. Integrity
ental damage to the database. Constraints can be defined in

pecified immediately after each column. This is called column-level

pecified after all the columns are defined. This is called table-level

group of columns, that is used to identify a unique row in a table.
alled a combination of a non-null constraint and a UNIQUE

Syntax : CREATE TABLE TABLE (column_1 data_type PRIMARY KEY, column_2 data_type,);

Example :

CREATE TABLE po_items (po_no INTEGER, item_no INTEGER, product no INTEGER, qty
INTEGER, net_price NUMERIC, PRIMARY KEY (po_no, item no));

In case you want to specify the name of the primary key constraint, you use CONSTRAINT clause as
follows :

Syntax : CONSTRAINT constraint name PRIMARY KEY (column_1, column 2...);
Define primary key when changing the existing table structure

Syntax : ALTER TABLE table name ADD PRIMRY KEY (column 1, column_2);

Example :

CREATE TABLE products (product_no INTEGER, description TEXT,
@duct_cost NUMERIC);

When we want to add primary key constraint in the table :

ALTER TABLE products ADD PRIMARY KEY (product no);

How to add an auto-incremented primary key to an existing table

ALTER TABLE vendors ADD COLUMN ID SERIAL PRIMARY KEY; T

B Remove primary key :
Syntax : ALTER TABLE table_name DROP CONSTRAINT primay_key_constraint;
For example : To create an employe table with Primary Key constraint, the query would be like.

Primary Key at column level : CREATE TABLE employee (id numbe(S) PRIMARY KEY, name
Char(ZO), dept char(10), age number(2), salary number(10), location char(10));

A a1 i

aII
i
¢
3

194 | Database Management System

or

CREATE TABLE employee (id number(5) CONSTRAINT emp_id _'_pk PRIMARY KEY, name
char(20), dept char(10), age number(2), salary number(10), location char(10));

Primary Key at column level :

CREATE TABLE employee (id number(5), name char(20), dept char'(IO‘), age number(2), salary
number(10), location char(10), CONSTRAINT emp _id_pk PRIMARY KEY (id));

Primary Key at table level :

CREATE TABLE employee (id number(5), NOT NULL, name char(20), dept char(10), age

number(2), salary number(10), location char(10), ALTER TABLE employee ADD CONSTRAINT
PK_EMPLOYEE ID PRIMARY KEY(id)):

W 8.7.2. Foreign Key

It is also called referential integrity. This constraint identifies a column referencin_g a primary key
in another table. For a column to be defined as a foreign key, it mus_t be defined as a primary key in the
table it is referencing. One or more columns can be defined as foreign keys.

—

CREATE TABLE Orders (OrderID int NOT NULL, OrderNumber int NOT NULL, PersonID
Lint, PRIMARY KEY (OrderID), FOREIGN KEY (personlD) REFERENCES Persons(PersonlD));

Define a group of columns as a foreign key :

CREATE TABLE child_table(cl INTEGER PRIMARY KEY;
2 INTEGER, ¢3 INTEGER, FOREIGN KEY (c2, ¢3)

REFERENCES parent _table (p1, p2));

Add a foreign key constraint to an existing table :
ALTER TABLE child_table
ADD CONSTRAINT constraint name FOREIGN KEY (c1) REFERENCES parent_table (pl);

Drop existing foreign key constraint :

ALTER TABLE child_table
DROP CONSTRAINT constraint tkey;

For example :

1. Lets use the “product” table and “order_items”.
Foreign key at column level :

CREATE TABLE

product (product_id number(5) CONSTRAINT pd_id pk PRIMARY KEY,
product_name char(20), supplier_name char(20), unit _price number(10))

CREATE TABLE order items (order_id number(5) CONSTRAINT od_id pk PRIMARY KEY,
product id number(5) CONSTRAINT pd_id fk REFERENCES, product(product_id), product name
char(20), supplier name char(20),

unit_price number(10));
Foreign key at table level :

CREATE TABLE order_items (order_id number(5), product_id number(5), product name
char(20), supplier name char(20), unit_price number(10) CONSTRAINT od_id_pk PRIMARY KEY

’

A._w.g
2

| Security | 195
order-id), CONSTRA]NT A
:,roduct(product_id)); Pd_id_fk FOREIGN KEY

'mari.ki:;t“::’i:zg:?:: table has ‘mgr_id’ je., manager id as a foreign key which references
pri © same table, the query would be like
AT . z
m?(gEmgrE ?;A:,?,Li MPployee (i Number(5) PRIMARY KEY, name char(20), dept char(10y, age
o CH,ECK_C o f‘.r(S) REFERENCES employee(id), salary number(10), location char(10y);
5 3 SuStraint ; This Constraint defines a business rule on a column. All the Tows must
satisfy this rule. The con 2

i : Straint cap be applied for single column or a group of columns,
X:

y column_name data_type CONSTRAINT constraint name CHECK (...)
CHECK on ALTER TABLE . 8

(product_id) REFERENCES

ALTER TABLE Persons ADD CHECK (Age>=

18);
DROP a CHECK Constraing -

=

ALTER TABLE Persong Drop CHECK CHK PcrsonAge'

|
For Example :

In the emplo
Check constraint at colum

CREATE TABLE employec (id number(S) PRIMARY KEY. name char(20), dept char(10), age
number(2), gender char(1) CHECK (gender in (‘M’, ‘F)), salary number(10), location char(10))-
Check constraint at tabje level :
CREATE TABLE emplo
number(2), gender char(1) sala
(gender in (‘M”, ‘F*)));
N 8.7.3. UNIQUE Constraint

This constraint states that a
column may contain a null value,

yee table to select the gender of a person, the query would be like.
n level ;

yee (id number(5) PRIMARY KEY, name char(20), dept char(10). age
Ty number(10), location char(10) CONSTRAINT gender ck CHECK

column or group of columns in each row has a distinct value. A
but values cannot be duplicated.

Syntax : [CONSTRAINT constraint_name] UNIQUE(column_name)
Creating a UNIQUE constraint on multiple columns :
Syntax : CREATE TABLE table (cl data_type,c2 d

ata_type,c3 data_type, UNIQUE (€2, ¢3));
UNIQUE Constraint on ALTER TABLE :

ALTER TABLE Persons
ADD CONSTRAINT UC_Person UNIQUE (ID, LastName);

DROP a Unique Constraint :
ALTER TABLE Persons

DROP INDEX UC _Person;

For Example : To create an employee table with Unique key, the query would be like,

1196 | Database Management System

Unique Key at column level : ‘ ’
CREATE TABLE employee (id number(5) PRIMARY KEY, name char(20), dept char(10), age
number(2), salary number(10), location char(10) UNIQUE);
Or
CREATE TABLE employee (id number(5) PRIMARY KEY, name char(20), dept char(10), age
number(2), salary number(10), location char(10) CONSTRAINT loc_un UNIQUE))
Unique Key at table level :
CREATE TABLE employee (id number(5) PRIMARY KEY, name char(20), dept char(10), age
number(2), salary number(10), location char(10) CONSTRAINT loc_un UNIQUE)) (location).

B 8.7.4. NOT NULL Constraint ey
This constraint ensures that all rows in the table have a certain value for the column, which is not

null. Which means a null value is not allowed.
Syntax : [CONSTRAINT constraint name] NOT NULL

Example :

CREATE TABLE invoice (id serial PRIMARY KEY, product_id int NOT
NULL CHECK(qty > 0), net_price numeric CHECK(net_price > 0));

NULL,qty numeric NOT

Not-null constraint to columns of an existing table :
Syntax : ALTER TABLE table name

ALTER COLUMN column_name 1 SET NOT NULL,
ALTER COLUMN column_name 2 SET NOT NULL.

Example :

ALTER TABLE production_orders

ALTER COLUMN material id SET NOT NULL,
ALTER COLUMN start_date SET NOT NULL,
ALTER COLUMN finish_date SET NOT NULL;

For Example : To create a employee table with Null value, the query would be like CREATE
TABLE employee (id number(5), name char(20) CONSTRAINT nm_nn NOT NULL, dept char(10),
age number(2), salary number(10), location char(10));

8.8. DIFFERENCE BETWEEN AUTHENTICATION AND

Authentication Authorization
% Authentication confirms your identity to| 4 Authorization determines whether you are
grant access to the system, authorized to access the resources,

NN Y b o S WA

Security | 197

& Itis the process of validatip

g g user credenti
to gain user access. cntials| ¢

It is the process of verifying whether access is

' allowed or not.
& It determines whether yger is

B e What he claims| &

It determines what user can and cannot access.
& Authentication usually re

quires a user na
and a password. g

Authentication factors required for authorization

Siseel may vary, depending on the security level.
& Authentication is the first step of

S < Authorization is done after successful
authorization so always comes first. authentication

For exarpple, students of a particular university
are required to authenticate themselves before
accessing the student link of the university’s
official website. This is called authentication.

What do you understand by database security?
What are database threats?

What do you understand by Authentication?

What do you understand by Authorization?

State the difference between Authentication and Authorization.
What do you understand by security risk? Describe in detail.

What are security constraints? Describe in detail.
What is Integrity constraint? Describe in detail.

For example, authorization determines exactly what
information the students are authorized to access on
the university website after successful authentication.

POESLIS N R

RO 3N s b

" Download and installing MySQL.
Follow these steps :

Step 1 : Go to the official website of MySQL and download the community server edition
software. Here, you will see the option to choose the Operating System, such as Windows.

Step 2 : Next, there are two options available to download the setup. Choose the version
number for the MySQL community server, which you want. If you have good internet connectivity,
then choose the mysql-installer-web-community. Otherwise, choose the other one.

General Avaliaditity (GA) Refosses Archives Y

MySQL Installer 8.0.19

Sedads Operating Systeny af Bredous GA

MIEroselt Windows » gorn

Windows (x86, 32.bit), MSI Instalier 8.0.1% 1888 m

Windows (x86, 32.bith M1 Installer 0,19 158 944 m

y v P & BN SaRBI0L SER2INE IV I0ed] tevk)

Installing MySQL on Windows :

Step 1 : After downloading the setup, unzip it anywhere and double click the MSI installer .exe
ile. It will give the following screen :

R SOL tnstaller - Communiy

@ Plesase wat whie Windows corfigures MySGL rataber - Communty

OWuuiSmgrmw

Plaess sodacs: tha Taym L L L TR TP m—

£ Drvnbopay tiatpets w3 Yy Dyt g
Y I By S st e m-uumwan 1Ay
VG SEvnsgage QAP sy KBS, o MR A KAy
i Fandan, 358 Syt WRRK Commer gy
4 .y T svn rd ol Amrgdns o sl
it e
St i W B Fore
TP
3 Chowe vany

LR Sy Ve ABATE EWrs
PR

T3, seitBeonid b setre

[T A,
Wacnpnty igrd Vo gomdast

ot
el n et ek s e
revhan

This option will install the following things
Router, MySQL Workbench, MySQL Connectors, docum
more.

MySQL Server, MySQL Shell, MySQL
entation, samples and examples, and many

Step 3 : Once we click on the Next button, it may give information about some features that
may fail to install on your system due to a lack of requirements. We can resolve them by clicking on
the Execute button that will install all requirements automatically or can skip them. Now, click on the

Next button.

LS04 vnabiates

S iy

Aoty ey

Pt beporany pewkants s Uiy v 5 WKL il it eBlpengh bt senitie
s A ronats 68y Tagunmenty seadnd 4 manar <ot be mcbied LR R e Y
AR BRS04 10 whd ipiiha R aly,

$pe Pocdht e |
O b Sapovernarm;

ML Yoo 1 3R

SR e ol Yolhon 1 5 ¥ Wanw

Eormesrsrhythn D Hthon A4 7 st iiteted b

BASCH Trstaller - Commnundy

ﬁ Flease wat whie Windows oonfigures MySGL installer - Communty
¥4

Gty requred rdomation

installed. So, if we need all products cllck on the Execute button

Klwnv (e

MySQL. installer lostatiation

P brtiurong oty s b medolud

Qw&.wnn PR ——
L] 2 wanmenen 0.8 Reay vo imeted
1 a0y 5 xasd
Read; b mated
Beat; 10 wensh
Boer; 2o my?
Trasg v et
Lnatyte mctat
Tregy nz rmed
Zoady w0 izl
Ppacty vy mriad

TR 0] T8 AR TN DR G RSP

e ‘ l;am:] Lt

Step 5 : Once we click on the Execute button it w1ll download and mstall all the products. After
completing the installation, click on the Next button.

44,53, imate - x

B
MySQL. instaler Instatlatior

Fedding Covemtrany
g e predats =4 be melplnd

;:1 Conrmcton NETSQ 08
=] Myih Coymantatsn 019 Compiene
{2] Sorpion snt taamotm $2.18 Camprer

e R

(o) e

HMigh Avatlabitity

& Standeione MK Sorver / Oleves ML Fepic stom

4 P dehion b

A TEINOTL Shanc M 3 SSanaione dalstane Senar wlh Wa

SN DI Gler BN Thy SOl iy (A SN i Guth
?agena

CLDECITNNTIQY OINE) I Gutf ITa D Pagh Svmeadeiiny ey (0BT for

e "’.\ §
T — e — ‘u

o Lzl AM0N i e 2 ren e o Dove WA e Anences 2 e b
» ae $ wna Lt of 0 e (S0 d e Kn 40 SeEh AR RNt

:

Step 7 : As soon as you will click on the Next button, you can see the screen below. Here, we
have to configure the MySQL Server. Now, choose the Standal

Replication option and click on Next. Here, you can also choos
needs.

one MySQL Server/Classic MySQL
e the InnoDB Cluster based on your

«l!«/lu .1" .. Ie e :
as TCP/IP, and Port
7] Attt wmstomme

il

ty

Type arvd Netwodking
Yanve Corfpanton foe
Chopmonn Wi 1 oresk oy (erdhopunstioon e dss Pos L,5GL Sevory :

A e (ehva g Cortins % wWieit hom pwe wrdd A 10 Laereck 81 S bemw.
axre poa (16| xoet e (4]
7 Oy inioass Fawaed pinti B Aatatod 4CAniS
() Mot D P Ny M85
0100 Mamivy Mlagay Paiae AT0A
ASprred Ceeligaston

St Db L0h Live bale

s ey cghonn fos

4 MIR Ao (g WL L G yE LA LA BN A
SR g P LY

] 3howm Advarxced pad Loy Cptiont

sps B] e]

Step 9 : Now, select the Authentication Method and click on Next. Here, I am going to select
the first option.

- x

f 1] MSCR tactalies

tethod

Authenticats

@ U Dreng Paswerd Ercryption foe Authaetizstion FECOMMENOED)

P PR AR TE R e WA the wenees L sedusies New v

3 2L

2 wrimct he updated 10 wppedt tha

’
4 f ARR L] € ¢ 0 wparnd Lo wbe U Teypasy M 300
" Use Legacy huthenticaton 1ethod (Retan ML Sa Compatitditg)
1 ' o 1 shouid Oty e Lonudered i tha
P s sbed o e Mby qaabled Lo eotory and divewny
#5F be e ' shicer 18 nat featitede
5 pecf £t b A pst avadakie
o Athe g ot byl . grof (A Serdtd 1teqry lomendt
¥ o ¥ pries arl datohane perves 12 U i AbsORpe avihievil alt
et ot r &y

S |

MR Dier Axconmsy

Create My caee b ey foe

\\\—n\«,mqw\

Step 11 : The next screen will ask you to confi
Keep the default setup and click on the Next button.

{ SO Inatalier

Windows Service

Windoas Serace Detadn

Run Windows Sansce 83 ..
b

8 Standeed Hyrtem Acsount

mended

Custom User

PO AT NS appld ont. AL 2 sk 24 the v thar.

r S PUSL
{ sy lh-'dm ea

& Cenfigure MYSOL Serves a5 2 Vindsas Semate

Windows Sereie Nome: (NARE

S Stat tha MUSTR Sonver 32 Syvtemn Staup

. s
=]
E"E}

< ([s [g

gure the Windows Service to start the server.

Ut Bated n e 1ottty
coe of the opboni Below.

b vefected for act amcad 1 anands

5 vk ;
10 Updatang Wirrrdent Fetmel
() blpmting Windenws semsee
o] hl-uquu-u-,mmnﬁi
O g the senves \
) Apphomy sacurty settngs
O Upding the Sem seves Bk

-
et

Step 13 : Once the configuration has completed, you will get the screen below. Now, click on
the Finish button to continue.

MySQLi Installer Apply Corfiguration
MySOE Server 8019 The sonfigurston cpartion hay completed.
Contgquumcn lept | og

e HVyebng cietguertos e

 Upssting Wendews Frewel naey

2 Adursng Wirdows serace

o bnwining detabane [y Lake 4 g Leea)
¥ Sarting e verver

W Appyng pcurey tettirgs

= Updonng tha T ssaivg kivic

Appiy Cordigueston

The coafguretoon $c WASOL Sermet 8013 wad suceeishal
ek Fowihs to conteven.

firiah

N vl

Muu.h’u-_n‘u-l e aach
Vou tam concel . &
“‘I # oy port { you mish 1 lamve the

Pagan

A58 devier 8009
MAK R 1014
Samgiet o Lamenen b6

W >

= Ce e

Step 15 : In the next wizard, we can choose to configure the Router. So click on Next->Finish
and then click the Next button.

L = x

MYSQL Installer MySCH Bouter Configuration
MySOL Rosater 80.19

7] Sectiirap 10,501 Bintel [wie woth tnani08 Ouiter

23 Ced TOOt R MAOL BRgta D) Sa et U Btasen AT Spplianant M §

» oaes that cance b It eaufer il be pAtmgtuody St cTed 1O
» nip e Ny merer of rter
MySCs. Rowster Corfiguranon
ret Temsres Feamhon) wne 8 Dsrler. ¥ 00020 04 repater 1ve
Wi g e e Gureet 303 Wate wdanor of Yhe yiter

For

Mansgement Urer. 1ot
Frivaced Tt Cemmmtian
2000 od 0 Date D% Botnden B) a2 VAT Tie Lol g 4 el

e chmand o Lrsutefaly ofer Tre Ml bt
tre base part

sedto be .‘rv plee
Crava WAy protacel coneactans 10 nnoll chyster
Fard horte
Frag Oy 4
MAACL K grstixol conmactatns 10 e {8 Guter
Fasd Ve

Pasd Omdy- 04

206 || Database Management System

Step 16 : In the next wizard, we will see the Connect to Server option. Here, we have 1o
mention the root password, which we had set in the previous steps.

MySQL. Installer Cannect To Server

yrples and Examy

Lot e AN/A0E Levpr en2arges Do The Bt 40 rov ehv 1drgdp o Pawege grt S92y
T S My SCR Senver sazances TR My B rusaen it 00T taly o
Tarer Pan 2an . Ype Seemen
Bl ML Sener 8015 106 X85 Srand sises Servnr [ERRRORIONNNE]

hyek 10 4
Pesips e L rosanily grresded s Serwe Cordipatet

Pricmcrd saswsavesssssss

Djent « Camenl

In this screen, it is also required to check asout the connection is successful or not by clicking
on the Check button. If the connection is successful, click on the Execute button. Now, the
configuration is complete, click on Next.

Step 17 : In the next wizard, select the applied configurations and click on the Execute button.

Apply Configuratior |
Chek [Execte] 10 appdy the Chadge
Sgrduuntan Regh Log l

(heching £ thete e avy festures imbaited 1hat need cenfigusstien.

Rusnag Sospts

s =

Practical Work | 207

stop I8 2 AR completing e Above step, we will got the following sereen, Here, click on the

M‘ putton,

SN iy

NRSOL. Wvavames A Cvutation

AR A Ay
) Ny gy W e VA ey (naiea
VR e gy \oy

LT
LA} %V g ey WAy L]

® oy ko

LI i bl o 00 W na ver i ond

tron

Step 192 Now, the My SQI
verify MySQL installation

mstallation iy complete, Click on the Finish button.

NN \ ‘ \ NN 3 ovove e o VR .
Once MySQL has been successtully installed, the base tables have been initialized, and the

anventy its working via some simple tests,
Open your MySQL Command 1 we Che

servet has been started, vou ¢

nt; it should have appeared with a mysql> prompt. If
you have set any password, write your password here, Now, you are connected to the MySQL server,
and you can execute all the SQL commands at mysql> prompt as follows :

For example : Check the already created databases with show databases command :

Now type on command prompt : Use database; then enter. Now starts create table and database.

BACTRONIY SISURRALES 2SS
CORR. TO the NySQL moaltor, - Command
P NySQL conapetiog 10 15 1e
FRE VARLI0NT 10\ 19 MyS Community Serve
COREIght (€) 2000, 2020, Oracle and/ar its affiliates. Al tghts ¢
ORaCEe 1y 3 repiiterad tradesark of Oragle Corporation and/or its
AECIl1ater. DEher namet may bY trademarks of ‘their TREpRCtiNe .
nert.,
Type. “helpy®or ‘\R! for help, Type '\c' to clean the current {nput statement

'3l show databases;

information_schema
{ aysql) |

performance_schema |

sakila
| sys

N T A R .
& rows in set (9,34 sec)

ysals

208 | Database Management System

Experiment-2 : A SR
Object :

Introduction to SQL, data type of SQL, type of SQL statement.
SQL [Structure Query Language] :

Structure Query Language is a database computer language designed for managing data in
relational database management system and originally based upon relational algebra. Its scope
includes data, query and update schema creation and modification and data access control. SQL was
one of the first language for Edgar F. Codd’s relational model in his influential 1970 paper, “A

relational model of data for large shared data banks” and become the most widely used language for
relational database.

¢ IBM developed SQL in mid of 1970’s.
® Oracle incorporated in the year 1979.

® SOL used by IBM/DB2 and DS database system. SQL adopted as standard language for
RDBMS by ANSI in 1989.

Data Type :

CHAR (Size) : This data type is used to store character string value of the fixed length. The size

in brackets determines the number of character the all can hold. The maximum number of character is
255 characters.

VARCHAR (Size)/ VERCHAR (Size) : This data type is used to store variable length Alpha
numeric data type. The maximum character can hold is 2000 characters.

NUMBER [CP.S] : The numeric data type is used to store number (fined or floating). Number
of virtually any magnitude may be stored up to 38 digits of precision number as large as 9.99* 10
power 124.

DATE : This data type is used to represent data and time; the standard format is ‘dd-mm-yyyy’

as in ‘26-sep-2021°. To enter dates other than the standard format use the appropriate function. Date
time starts date in the 24 hours format.

LONG : This data type is used to store variable length character string containing up to 2 GB.

Long data can be used to store array of binary data in ASCII format long values cannot be indexed and
the normal character function such as SUBSTR cannot be applied.

RAW : The raw data type is used to store binary data type such as digitized picture or image.
Data loaded into column of these data type are stored without any further conversion. Raw data type
can have a maximum length of 255 byte. Long raw data type can contain up to 2 GB.

There are fives type of SQL statement. They are :
e Data Definition Language (DDL)

¢ Data Manipulation Language (DML)

¢ Data Retrieval Language (DRL)

® Transitional Control Language (TCL)

® Data Control Language (DCL)

il od B0 e ol

" language, difference
2L TR h . {
o) My (;iqf) ‘(;g{ﬁg{mlm B3 o
ottEritrng oislol

. ' B Bt il bt s

¢ + 373 e Rk Y INSHRNT] BEVeey
' pata Definition Language (DDL) :

~ The Data Definition Language..-(DDb) is
'i(',mm ands will primarily be used by data base ad.

hrini
Jata base projects. Let’s take a look at the structure
1. Create 2. Alter 3. Drop 4. Rename
1. Create :
‘ . (a) This is used to create a new relation and the corresbonding. VARIAT .
| Example : MySQL> Create table student

(s_no numeric (8), S _name varch& (20));

(b) Create table as select : This is used to create the structure of a new relation from theu

structure of a existing relation,
2. Alter :

(a) Alter table add : This is used to add some extra fields into existing relation.
Example : MySQL>ALTER TABLE student ADD (Address varchar (10));

(b) Alter table modifies : This is used to change the width as well as data types of field of
existing relations.

Example :
varchar(20));

(c) Alter table drop column : This is used to create a relati
in the table.
Example : MySQL>ALTER TABLE student DROP column (DOB);
3. Drop Table :
This is used to create a relation. It permanently deletes the records in the table.

The SQL DROP command is used to remove an object from the database. If you drop a
table, all the rows in the table is deleted and the table structure is removed from the database.

Once a table is dropped we cannot get it back, so be careful while using DROP command.
When a table is dropped all the references to the table will not be valid.

Syntax : DROP TABLE table name;
Example : To drop the table STUDENT, the query would be like
Mysql>DROP TABLE student;

(a) Rename : It is used to modify the name of existing database objects.
Mysql>RENAME Table student to Anjali;

(b) Truncate : This command will remove the data permanently but structure will_nfjt remove.
The SQL TRUNCATE command is used to delete all the rows from the table and free the
space containing the table.

MySQL>ALTER TABLE student MODIFY (s name varchar (10), class

on it one column deletes the records

210

Differe

I

3

4. DRO

Database Management System

Syntax : TRUNCATE TABLE table_name;
Example : To delete all the rows from STUDENT table, the query would be like,
MySQL>TRUNCATE Table student; ;

nce between Truncate, Delete and Drop :

By using truncate command data will be removed permanently and will not get back where

as by using delete command.
By using delete command data will be removed based on the condition on whereas by using

truncate command where is on condition.
TRUNCATE is a DDL Command and DELETE is a DML command.

TRUNCATE

TRUNCATE is a DDL command.

TRUNCATE is executed using a table lock and
records.

We cannot use WHERE clause with TRUNCATE.

TRUNCATE removes all rows from a table.
TRUNCATE TABLE removes the data by deallocating the data pages use
data and records only the page deallocations in the transaction log.

Identify column is reset to its seed value if table contains any identity column.
To use TRUNCATE on a table you need at least ALTER permission on the table.

TRUNCATE cannot be used with indexed ViEWS.

DELETE

DELETE is a DML command.
DELETE is executed using a row lock, each row in the table is locked for deletion.

We can use where clause with DELETE to filter and delete specific records.
The DELETE command is used to remove rows from a table based on WHERE condition.

whole table is locked for removing all

d to store the table

The DELETE statement removes rows one at a time and records an entry in the transaction
log for each deleted row.
Identity of column keep DELETE retains the identity.
Delete can be used with indexed views.
ik
The DROP command removes a table from the database.
All the tables’ rows, indexes and privillege will also be removed.
No DML triggers will be fired.
The operation cannot be rolled back.
DROP and TRUNCATE are DDL commands, whereas DELETE is a DML command.
DELETE operations can be rolled back (undone), while DROP and TRUNCATE operations
cannot be rolled back.
a

% }.ke brief look at the commands :

s Waniptaton Languago o :

~ The Data Manipulation Language is uudto Mricvc
e commands will be used by all da [

tabase users during the routine ;

1. INSERT Y

2. UPDATE ke

3.DELETE . : R 121 ¢

OV 4 A - G BT men Beiaules

1. INSERT : This is used to add record into a relation. These are three types of insert into
queries which are, ‘ : o e P
Example : MysqI>INSERT INTO student value(1, ‘shimpee’, 123); .

2. L,

UPDATE : This is used to update the content of a record in a relation.
Example : SET-WHERE :

3. DELETE FROM : This is used to delete a
structure of that relation.
Syntax : DELETE FROM table_name [WHERE condition];
(a) DELETE : This is used to delete all the records of relations.
Example : Mysql>DELETE FROM student;
(b) DELETE FROM WHERE : This is used to delete a selected record from a relation.
Example : Mysql>DELETE FROM student WHERE s_no=2;

Select From Where :

I the records of a relation but it will remove the

This query is used to display a selected set of fields for a selected set of records of a relation.
***WHERE OPERATORS

Example : Mysql>SELECT*FROM student WHERE S _no<=3;

SQL DELETE Example : To delete an employee with id 100 from the employee table, the sql
delete query would be like,

DELETE FROM employee WHERE id = 100; .
SELECT GROUP BY : This query is used to group all the records in a relation. The GROUP

BY statement is often used with aggregate functions (COUNT, MAX, MIN, SUM, AVG) to group the
result-set by one or more columns.

Example : Mysql>SELECT emp no, SUM(salary) FROM emp group by emp no;

SELECT FROM HAVING : The HAVING clause was added to SQL because th\e WHERE
keyword could not be used with aggregate functions. !

~ GRO prBY wlmlm » ({‘j}*fﬂ#“ ‘ o
£ HAVING condition SEELIGT ofit ZOTID RISl GREORIE
ORDER BY column_name(s);

Example : Mysql>SELECT name, count

Selected from ordered by :
This query is used to display a selected set of fields from a relation i
on some fields.

**The SQL ORDER BY Keyword
The ORDER BY keyword is used to sort the result-set in ascending or descending order.

The ORDER BY keyword sorts the records in ascending order by default. To sort the records in
descending order, use the DESC keyword.

(*) from student group by name having count (*

nmordemww :

Join using select from ordered by :

This query is used to display a set from two re
ordered manner based on some fields.
Example : Mysql>SELECT emp code, name, dob, from student where s_no=5 ordered by dob;

lations by matching a common field in them in an

a

| ’):*}"’ '\‘ﬁm)

A transaction is a logical unit 61"‘"%*?‘&11‘% ges madé'to
tion. Transaction begins with an executabl e SQL statement vith
 or commits statement. | et AR TR
1. COMMIT : This command is used to end a transactior Only with h :
command transaction changes can be made permanent to the database, -H* g
Example : SQL>Commit; SO Rl
2. SAVE POINT : Save points are like marks to divide a very lengthly transaction to smaller g

| once. They are used to identify a point a transaction to which we can latter rollback. o These
| save point are used in conjunction will rollback. e
Example : SQL>Save point xyz: s S

{

3. ROLLBACK : A rollback command is used to undo the current transaction. ‘We can
rollback the entire transaction so that all changes made by SQL statement are undo or

rollback a transaction to a save point so that the SQL statement after the save points are
rollback. el

Example : SQL>rollback; ' ; e
SQL>rollback to save point XYZ;

DATA CONTROL LANGUAGE (DCL) :

DCL prove id’s uses with privilege command the owner of the database object (tables), has the
soul authority ollas them. The owner (database administrator) can allow other data base users to access
the object as per their requirement.

1. GRANT : The grant command allows granting various privileges to other users and

allowing them to perform operations within their privilege. i
Example : SQL>grant select, update on help on employee to Hemant; i .)
2. REVOKE : To with drive the privilege that has been granted to uses, we use the revoke ,(
command. i

Example : SQL> Revoke select, update on employee from Ravi;

o s .‘”- |.' : J i g ¥ '_ﬁ ?m' b A "h“’% / ::. 3 :
use to p operation, such as comparis ‘and arithmetic operation.
P34 ;r { 'nu“ L 's,‘ TIC‘OPEX ’%k 3 LD NN ’ jn’j([i‘ﬂbff’vz
' ARITHME . TIMNMOTY .
118 GOMBARISON-QPERATOR 1.1y ¢ bris of busy #i haeramns 0 - ol :
e LOGICAL OPERATOR bare od fng eagbitd BOTTC L L v col

e SET OPERATOR

ARITHMETIC OPERATOR : | i
Arithmetic operators are used to perform mathematical calculations likes addition, subtraction,

multiplication, division and modulus.
e Unary operator
e Binary operator

UNARY OPERATOR :
1. mysqI>SELECT NAME FROM STUDENT WHERE EMPCODE =+ Y223

2. mysql>SELECT NAME FROM STUDENT WHERE EMPCODE = — ¥22;

BINARY OPERATOR :
ADDITION : mysql> SELECT SALARY, SALARY + 1000 FROM STUDENT; rAd

SUBTRACTION : mysql> SELECT SALARY, SALARY — 1000 FROM STUDENT;
MULTIPLICATION : mysql> SELECT SALARY, SALARY * 1000 FROM STUDENT;
DIVISION : mysql> SELECT SALARY, SALARY / 1000 FROM STUDENT; }
MODULUS : mysql> SELECT SALARY, SALARY % 1000 FROM STUDENT;
COMPARISON OPERATOR : These operators are used to perform compare the value of two

variables.
EQUAL (=) : mysql>SELECT NAME, S NO FROM STUDENT WHERE EMPCODE=123;

NOTEQUAL (=) : mysq>SELECT NAME, S NO FROM STUDENT WHERE

EMPCODE=123;

GREATER ()

EMPCODE=123;
LESS THAN (<) : mysql>SELECT NAME, S_NO FROM STUDENT WHERE EMPCODE =

mysql>SELECT NAME, S NO FROM STUDENT WHERE

123;

LOGICAL OPERATORS : These operators are used to perform logical operation on the

given two variables :
® AND

Practical Work I 215

, ARY=22000;
r,‘ ~ Statement WHERE

Exmple : MySQL>SELECT salary*.001CEIL (salary*. 00‘1) from 9‘““‘"‘ - "
MOD() : Returns remainder of m divided by n. ‘ o

Example : MySQL>SELECT name, salary/30 MOD (salary, 30) from student
salary<1000;

POWER() : Returns m raised to the power », #n must be an integer.

Example : SELECT Sal, POWER (salary, 2) from student where salary>1000;
Sign (n) : Returns-1 if n is negative, returns 1 if n is positive and returns 0 if n is 0.
Example : Select name, salary, salary-5000 SIGN (SALARY-5000) from student; e
SQRT(n) : Returns the square root of n.

Example : SQL>SELECT NAME, SALARY, SQRT (SALARY) from student;

TRUNC (m[n]) : It truncates the m or col. to n decimal places. If n is omitted it is truncated
to no decimal places.

It n is —ve then no.’s left of decimal places are truncated to 0.
Example : SELECT salary (1000, 2000), Trunk (10.90,— 1) from student;

number on the basis of given character they opposite functione
. &8 Select CHR(37)a, CHR(100)b; CHR(101)c; from dsl? 416

Olltpllt: FF 0 - ‘"»Yfrmq,g ‘ tt
A B C bitn
% d e AT AR i ioniel 22
e.g., Select ASCII(" ') from dual: BN i
| Output : 32 bt
e.g., Select ASCII (‘a’) from dual; : LR VAR AR A

f Output : 97 .. Tt
i 2. CONCAT (Strings 1 String 2) :

Returns Str 1 joined with Str2. It is identical to its operator.

e.g., Select concat(‘Alphabet’,*Soup’) “Dinner” from dual ;
OP-Dinner

Alphabet soup 9
3. INITCAP (String) : | o
Capitalise the first character of each word in the string.
e.g., Select Initcap (DNAME) from deptment; 4 |
4. LOWER(String) : Converts the string to upper case. |
e.g., Select lower (DNAME), lower(‘XYZ’) from deptment; ‘
5. UPPER(String) : Converts the string to upper case.) |
e.g., Select upper(DNAME), upper(‘abc’) from deptment;
6. RPAD(Charl,n[Char2]):
Same as above but it fills to the right.
e.g.,: Select RPAD(dname,15, ‘&’), RPAD(dname, 15,) from dept.
7. LTRIM(String,'Char/s') : Remove all blank spaces from the left.
if char/s is specified it removes from the left loading occurrence of char.
e.g. . Select dname, LTRIM (dname), LTRIM(dname,'R) from dept;

OP: Accounting Accounting Accounting
RESEARCH RESEARCH E,E ARCH

10.

11.

12.

13.

CHTOZA YR on O R

mul sk el A . ? ">‘m &”
SUISTAR(W[,-D Wqu&nW from ! o3
starting at position no, m. Ifnunotspeclﬁedﬂlesmsl'“w"dﬁ"m: L
e.g.,: Select dname SUBSTR (dname, 2,4) Substr(dname, 4)from dept;
OP: Research e ses ~earch
Sales ales €s
TRANSLATE(String,from_str,to-str) : |

Return string with all occurrence of each character in from_str replaced bY i

character in to_str. It is a Superset of functionality provided by REPLAC:’ fl’rt;)m *
longer than to_str,any extra characters in from_str. Not in to_str, are remov m

e.g.,- Select TRANSLATE('abcdefghij', rabedef','123456')from dual;
OP : 123456 ghij
e.g., : select TRANSLATE('abcdefghij','abcdeﬁgij','123456')from dual;

OP : 123456
INSTR (String,char) : Returns the position of first occurrence of 'char' in string.

e.g. : Select Dname,INSTR(DNAME, ¢')from dept; i
OP : Research 8 : '
Sales 4 : l
LENGTH(String) : Returns the length of a string 1‘
e.g., : Select dname, LENGTH(dname)from dept;
OP : Research 8 '
Sales 5 !

e.g., : Select upper (ename), Lower(ename),Intcagp(ename)
Length(ename)from empi;
OP : SMITH smithsmith 5

eg.,
Selectname,Lower(ename),INSTR(ename,‘A’),SUBSTR(job, 1,3),LPAD(ename, 10,‘-"),

RPAD(ename,10,“-”) from empl;

a

‘‘‘‘‘

in OOSRITER AT AT EAR y vy ¥

|
|

3. Outer join oy Y I
6. Inner join , : _ '
7. Full outer join

l.mossmzhmm,mmhm-ﬂbyﬂjtiwﬂﬁm
m;ctofﬂ)etables,soﬂ:isjoinisMnaijlm

Example : MYSQL : select L-henna, f-name, order-no from person cross join order-1:

2. INNERJO!N:Itisusedtomnmwhcheme‘MhM“ifﬁlm
in person tables does not with order tables than those row will be listed.

Example : Select L-name, F-name, order-no from person-1, inner join order-1 on person-1
p-id=order-1, p-id;

3. OUTER JOIN : In outer join the record of 1st table is matched with second table by join
condition record and row.

Example : Select L-name, F-name, order-no from person 1, outer join order-1 on person-1,
p-id=order-1 p-id;

4. LEFT OUTER JOIN : A return all the row/record from the left table even if there are no
match in the right table.

Example : Seclect L-name, F-name, order-no from person left outer join order-1 on person-1,
p-id=order-1. p-id;

5. RIGHT OUTER JOIN : If return all the row/record from the right table even if there are no
match in the left table.

Example : Select 1-name, f-name, order-no from person no-1 right outer join order-1 person-1,
P-id=order-1.p-id;

6. SELF JOIN : In self join there are record of table is match with the record of the same table.
In self join for comparisons the one table is used.

Example : Select L-name, f-name, order no from person-1 self join order-1;

to be accepted for storage in the tab . ot s L BT
. 74N WV CHAK]

Example : CREATE TABLESTUDENT (s_no numeric(3), WVA"F 2z t;;e e

2. UNIQUE : The purpose of a unique key is to ensure that mf?tmlﬂﬂ e
unique i.e., a value entered in column(s) defined in thf unique cOngEES ;
repeated across the column(s). A table may have many unique keys-

Example : CHECK (class IN (‘CSE', CAD"'VLSI));

3. PRIMARY KEY : CREATE TABLE student (s_no numeric 3), Name.VARC i ‘R. ¢
4. CHECK : Specify a condition that cach row in the table must sansfym;fly the
constraints, each row in the table must make the condition either TRUE or (d |

to null).
Example : CREATE TABLE student (sno numeric(3

VARCHAR(S),

A field which is used to identify a record unique. A column or ¢
be creating as primary key, which can be used as a reference
contains primary key is known as master table.

e It must uniquely identify each record in a table.

), name VARCHAR (10), class

Ly

ombination of columns can
from other tables. A table

e [t must contain unique values.
4
It cannot be a null field.

5. SELECT FORM : To display all fields for all records. 20
| Example : SQL>select * from student;

SNO SNAM CLASS ADDRESS L2
101 SIRISHA CSE PALAKOL ‘
102 DEVAKI CSE NARSAPUR

103 KUMAR CAD BHIMAVARAM

104 RAVI VLSI PALAKOL :

(a) SELECT FORM : This display a set of fields for all records of relation.

Example : SQL>select sno, sname from student;
S.No. SNAME

| 101 SIRISHA

s e e e T,

manipulates the data in the underline table.

PR ["v &4 i R

R
09

0y fﬂm . 1WM ﬁ

ﬂﬁl’w hladd wmw-w” "

Introduction to views, what is NULL value. ' LI oF sldie o Rk 6
VIEWS : : i
A view is used to store the SELECT

statement only. It does not have any data of its own rather it

There are two types of views :
1. Simple view

2. Complex view
Simple views derives data from a single table and contain on

function or group data while.
Complex view can be derived data from many tables and contain function and grouped data.
1. CREATE VIEW :

Create view<view
name<name>|;

Example : create view student as
® Select Sname, salary from student where S _Nno=5;
¢ CREATE VIEW STD AS SELECT* FROM STUDENT;
EX : Std_no Name, Subject from student;
2. TO SELECT A DATABASE FROM A VIEW
¢ SELECT<column name 1> <column name2>from<view name>;
Ex : SELECT STD_NO, Name, Subject from studentl;
3. TO UPDATE VIEW
¢ UPDATE Nominees SET NAME='ASHU' Where Name='"neha’;
® DELETE FROM Nominees WHERE NAME="‘rajan’;

-name> (columns(s)>)as<select-statement>[with check option[constraint

h 9 | 181 kah& 114 \d Q (

| ¥ Mnamiwqtﬂ }
How to Test for NULL an-es? i 3
It is not possible to test for NULL values with oomgan OP“‘”“,’, 5 ":~ e

We will have to use the IS NULL and IS NOT NULL opmwﬁ
IS NULL Syntax

SELECT column_names » "8
1 FROM table_name ; : ; : ot k
| WHERE column_name 1S NULL;

IS NOT NULL Syntax

SELECT column_names : f

FROM table_name v A
WHERE column_name IS NOT NULL. »

e .

mmmﬂwa‘w 5 mmri-? i
o ¥ Yo xm?r BT ol o siethn i 2 ereri
oty Aaidn s St Of poibioos sicw o

Ot v
;‘;.Gimp““‘ Index DOWGHE Tor 1 It wei v ot slidosd i

1. Simple Index : A single-column index is created based on only one table column.
The basic syntax is as follow : :

CREATE INDEX>Index Name>ON<Table Name>(<Column Name>);

2. Composite Index : A composite index is an index on two or more columns of a table.
The basic syntax is as follow :

CREATE INDEX<Index Name>ON<Table Name>(Column1>,<Column2>);

3. Clustered Index : Cluster index is a type of index which sorts the data rows in the table on
their key values. In the database, there is only one clustered index per table. A clustered index defines
- the order in which data is stored in the table which can be sorted in only one way.

4. Syntax : CREATE INDEX < Index Name >ON<Table Name>(<Column Namel>,<Column
.~ Name2>...)compress|;

5. Unique index : Unique indexes are used not only for performance, but also for data integrity.
A unique index does not allow any duplicate values to be inserted into the table. The basic syntax is as
follows :

Syntax : CREATE UNIQUE INDEX<Index Name>ON<Table Name>(<Column Name>);

|
8 |

i) S . are advised to specially check the , aNSW

" Ifthere is any difference in Hindi Translation of any questions. (e g n
- questions according to the English version. O

(iii) Use of Pager and Mobile Phone by the students is not allowed. AL .

[‘2x5=u]'j

o

Q1. Answer any two of the following :
(a) Explain conceptual and internal view of the DBMS.
(b) What are the components of DBMS.
(c) What is DBMS? Explain the advantages.

Q 2. Answer any two of the following :

(a) Draw an ER diagram for library manzcment system.
(b) Write the advantages and disadvantages of the various Data models.
(c) What is strong and weak entity set? Explain with example.

[2x5=10]

' Q 3. Answer any two of the following : [2x5=10]

(a) Write the Codd’s 12 rules.
i (b) Explain basic operation of relational algebra.
| (c) Write notes on key and integrity constraints.

! Q 4. Answer any two of the following : [2x5=10]
{ (a) What is the purpose of Normalization? Explain updating Anomalies.

{ (b) Write notes on functional dependencies and decomposition.

(c) Explain INF, 2NF, 3NF with example.

Q 5. Answer any two of the following : [2x5=10]
(a) Explain following SQL commands with example : SELECT, WHERE, ORDER BY
(b) Write notes on security constraints and Integrity constraints.
(c) Explain procedure and stored procedures in PL/SQL. ’

Qad

